← 返回
温室气候预测的深度学习创新:来自西班牙案例研究的见解
Deep Learning Innovations for Greenhouse Climate Prediction: Insights From a Spanish Case Study
| 作者 | Salma Ait Oussous · Dauris Madama Lail · Rachid El Bouayadi · Aouatif Amine |
| 期刊 | IEEE Access |
| 出版日期 | 2025年1月 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 深度学习 |
| 相关度评分 | ★★★★ 4.0 / 5.0 |
| 关键词 | 温室温度预测 深度学习模型 PLSTM模型 环境因素 精准气候控制 |
语言:
中文摘要
准确预测温室温度对有效气候控制和优化作物生产至关重要。本文研究深度学习DL模型和早期研究提出的Power LSTM模型在西班牙数据库上预测温室内部温度的性能。通过分析GRU、ANN、LSTM-ANN和LSTM-RNN等DL架构,对比评估PLSTM模型性能。结果显示PLSTM模型始终优于其他DL模型,R²达0.9999,RMSE和MAE显著更低,展示其处理温室条件时间序列预测的鲁棒性,为改进农业精准气候控制和智能温室系统开发提供关键工具。
English Abstract
Accurate prediction of a greenhouse temperature is essential for effective climate control and optimal crop production. In this study, we focus on the performance of deep learning (DL) models and the proposed Power Long Short-Term Memory (PLSTM) model introduced in our early research for predicting internal temperatures using a database from Spain. By analyzing DL architectures such as Gated Recurrent Units (GRU), Artificial Neural Networks (ANN), Long Short-Term Memory with Artificial Neural Network (LSTM-ANN), and Long Short-Term Memory with Recurrent Neural Network (LSTM-RNN), we aim to benchmark their performance against the proposed PLSTM model. Additionally, this study explores the correlation between internal temperature and other key environmental factors and evaluates how well the models generalize these relationships. The results show that the PLSTM model consistently outperforms the evaluated DL models, achieving an R2 of 0.9999 with a significantly lower Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE) demonstrating its robustness in handling time-series forecasting for greenhouse conditions. This research underscores the potential of PLSTM as a key tool for improving precision climate control in agriculture and offers valuable insights for the development of intelligent greenhouse systems.
S
SunView 深度解读
该温室气候预测技术对阳光电源农业光伏和智慧农业应用有重要意义。阳光光伏+农业大棚解决方案需要精准的环境控制和能源管理。PLSTM深度学习模型可集成到阳光智慧农业系统,实现温室温度精准预测和智能调控。结合阳光光伏发电和储能系统,可优化温室供暖制冷能源使用,降低农业用能成本。该技术可进一步扩展到光伏电站环境监测和发电功率预测应用。