← 返回
通过机器学习增强可及性:视觉和听觉障碍技术综述
Enhancing Accessibility Through Machine Learning: A Review on Visual and Hearing Impairment Technologies
| 作者 | Pal Patel · Shreyansh Pampaniya · Ananya Ghosh · Ritu Raj · Deepa Karuppaih · Saravanakumar Kandasamy |
| 期刊 | IEEE Access |
| 出版日期 | 2025年1月 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 机器学习 深度学习 |
| 相关度评分 | ★★★★ 4.0 / 5.0 |
| 关键词 | 机器学习 感官障碍 辅助技术 算法模型 生活质量 |
语言:
中文摘要
机器学习驱动的辅助技术正在变革感官障碍的解决方式。本文全面综述为听觉和视觉障碍群体设计的机器学习算法。针对听觉障碍,分析SVM、随机森林RF和多层感知器MLP等先进模型在听觉辅助应用中的有效性。针对视觉障碍,评估YOLO、SSD和RetinaNet等最先进目标检测框架实现实时物体识别和导航辅助的能力。研究还综述生成式AI在视觉和听觉障碍场景中的应用,强调深度学习模型在推进辅助技术、提升感官障碍者生活质量方面的变革潜力。
English Abstract
Assistive technologies powered by machine learning are transforming the way sensory impairments are addressed, offering innovative solutions for individuals with hearing and visual disabilities. This paper provides a comprehensive review of machine learning algorithms designed to enhance accessibility for these groups. For hearing impairments, the analysis focuses on advanced models such as Support Vector Machines (SVM), Random Forests (RF), and Multi-Layer Perceptrons (MLP), examining their effectiveness in auditory assistive applications. In the context of visual impairments, state-of-the-art object detection frameworks like You Only Look Once (YOLO), Single Shot MultiBox Detector (SSD), and RetinaNet are evaluated for their capability to enable real-time object recognition and navigation aids. The study also reviews the Generative Artificial Intelligence based applications for visual and hearing impaired use cases. The study addresses the unique challenges and requirements associated with each type of sensory impairment, with particular emphasis on the customization and fine-tuning of machine learning models for personalized, effective solutions. Additionally, it highlights the transformative potential of deep learning models in advancing assistive technologies, ultimately aiming to enhance the quality of life for individuals with sensory disabilities. By advocating for the development and integration of such technologies, this paper underscores the importance of inclusivity and empowerment in creating a more equitable society.
S
SunView 深度解读
该机器学习辅助技术对阳光电源智慧运维和人机交互系统有启发意义。阳光iSolarCloud平台可借鉴目标检测技术实现光伏组件缺陷自动识别和无人机巡检。YOLO等实时检测算法可应用于阳光储能电站安全监控和异常检测。语音识别和自然语言处理技术可优化阳光智能运维系统的人机交互界面,提升现场运维人员操作便利性。该综述展示的个性化ML模型定制思路可应用于阳光不同应用场景的算法优化。