← 返回
基于多层感知器的四旋翼无人机扰动下自适应滑模控制
Adaptive Sliding Mode Control for Quadrotor UAVs Under Disturbances Using Multi-Layer Perceptron
| 作者 | Mir Mikael Fatemi · Adel Akbarimajd |
| 期刊 | IEEE Access |
| 出版日期 | 2025年1月 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 SiC器件 深度学习 |
| 相关度评分 | ★★★★ 4.0 / 5.0 |
| 关键词 | 四旋翼无人机 自适应滑模控制 多层感知器 轨迹跟踪 抖振现象 |
语言:
中文摘要
本文提出四旋翼无人机UAV在外部扰动和参数不确定性下的新型自适应滑模控制SMC框架。该方法利用多层感知器MLP神经网络实时动态调节SMC参数。MLP与SMC协同集成实现自适应、鲁棒和节能控制,显著提升系统性能。通过基于实时系统反馈持续调整SMC控制器参数,MLP有效减轻外部扰动和参数不确定性影响,实现增强轨迹跟踪精度的最优超参数值。神经网络使控制器无缝适应系统行为和环境条件的动态变化。本研究另一关键贡献在于大幅降低传统SMC系统的抖振现象。仿真验证所提控制器在各种外部扰动和动态工况下的卓越稳定性和鲁棒性,控制器快速适应环境变化的能力超越传统方法。
English Abstract
This paper introduces a novel adaptive sliding mode control (SMC) framework for quadrotor unmanned aerial vehicles (UAVs) operating in the presence of external disturbances and parametric uncertainties. The proposed approach leverages a multi-layer perceptron (MLP) neural network to dynamically tune the SMC parameters in real-time. This synergistic integration of MLP with SMC enables adaptive, efficient, robust, and energy-efficient control, significantly enhancing system performance. By continuously adjusting the SMC controller parameters based on real-time system feedback, the MLP effectively mitigates the impact of external disturbances and parameter uncertainties, achieving optimal hyperparameter values for enhanced trajectory tracking accuracy. The neural network empowers the controller to adapt seamlessly to dynamic changes in system behavior and environmental conditions. Another key contribution of this research lies in the substantial reduction of the chattering phenomenon, a common limitation of traditional SMC systems. Through rigorous simulations, the proposed controller demonstrates superior stability and robustness under diverse external disturbances and dynamic operating conditions. The rapid adaptability of the controller to changing environments surpasses the performance of conventional methods. This work underscores the significant potential of integrating artificial intelligence techniques with classical control methodologies to enhance the resilience and adaptability of UAV control systems in complex and unpredictable scenarios.
S
SunView 深度解读
该自适应滑模控制技术对阳光电源功率变换器控制策略优化有借鉴意义。阳光储能变流器和光伏逆变器面临电网扰动和参数变化的挑战。MLP神经网络自适应调节控制参数的思路可应用于阳光控制算法,提升在弱电网和复杂工况下的鲁棒性。抖振抑制技术对阳光功率器件的开关损耗降低和EMI改善有价值。该研究展示的AI与经典控制融合思路,可推广到阳光构网型控制、有源阻尼等先进控制功能开发中。