← 返回
基于均匀鲁棒精确微分器的神经模糊分数阶滑模控制在独立式太阳能光伏系统优化中的应用
A Uniform Robust Exact Differentiator Based Neuro-Fuzzy Fractional Order Sliding Mode Control for Optimal Standalone Solar Photovoltaic System
| 作者 | Safeer Ullah · Ahmed S. Alsafran · Ambe Harrison · Ghulam Hafeez · Abouobaida Hassan · Baheej Alghamdi |
| 期刊 | IEEE Access |
| 出版日期 | 2025年1月 |
| 技术分类 | 光伏发电技术 |
| 技术标签 | 储能系统 深度学习 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 独立光伏系统 神经模糊分数阶滑模控制 模糊逻辑神经网络 分数阶控制 能量提取 |
语言:
中文摘要
本研究提出一种用于独立式光伏系统的新型神经模糊分数阶滑模控制方法,旨在抑制环境变化引起的不确定性和干扰。该方法融合模糊逻辑神经网络、均匀鲁棒精确微分器与分数阶滑模控制。神经网络精确预测非线性参考电压轨迹,微分器估计不可测状态与外部扰动,分数阶控制增强了系统适应性与鲁棒性。基于Lyapunov理论严格验证了系统稳定性。MATLAB仿真与实验结果表明,该方法显著提升了跟踪精度与整体性能,为独立光伏系统能量优化提取提供了高效鲁棒的解决方案。
English Abstract
This study introduces an innovative neurofuzzy fractional-order sliding mode control approach for standalone photovoltaic systems, designed to mitigate uncertainties and disturbances caused by fluctuating environmental conditions. The method combines a fuzzy logic neural network, uniform robust exact differentiator, and fractional-order sliding mode control. The neural network accurately predicts nonlinear reference voltage trajectories, whereas the differentiator estimates unmeasurable states and external disturbances. The inclusion of fractional-order control improved the adaptability and robustness of the system. The stability of the proposed approach is rigorously validated using the Lyapunov theory. MATLAB simulations and experimental results significantly improve tracking accuracy and overall system performance, providing a robust and efficient solution to optimize energy extraction in standalone PV systems.
S
SunView 深度解读
该神经模糊分数阶滑模控制技术对阳光电源SG系列光伏逆变器和ST储能变流器具有重要应用价值。其均匀鲁棒精确微分器可增强现有MPPT算法在光照突变、阴影遮挡等复杂工况下的跟踪精度和响应速度,优化最大功率点捕获性能。分数阶滑模控制的强鲁棒性可提升逆变器在电网扰动、负载突变时的稳定性,与阳光电源GFM构网型控制技术形成互补。神经网络预测模块可集成至iSolarCloud平台,实现智能功率预测与自适应控制参数优化。该方法的Lyapunov稳定性验证为PowerTitan大型储能系统的控制策略提供理论支撑,提升系统在离网/并网切换场景下的可靠性,具有显著工程应用前景。