← 返回
基于Transformer的电动汽车电池荷电状态估计模型
A Transformer-Based Model for State of Charge Estimation of Electric Vehicle Batteries
| 作者 | Metin Yılmaz · Eyüp Çinar · Ahmet Yazıcı |
| 期刊 | IEEE Access |
| 出版日期 | 2025年1月 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 电池管理系统BMS |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 电池 荷电状态预测 Transformer模型 电动汽车 电池管理系统 |
语言:
中文摘要
电池在电动汽车EV系统设备中发挥关键作用。这些应用的安全性和性能依赖准确的电池管理系统BMS来监测和优化电池性能。传统BMS系统因复杂化学过程和电池老化在充电预测过程中面临挑战,导致故障。完美传感器的缺失凸显外部因素特别是传感器噪声引起的测量问题的局限性。因此需要能解决现实世界电池充电预测问题的算法。本研究比较创新解决方案Transformer模型与传统长短期记忆LSTM、双向LSTM和支持向量回归SVR。本研究旨在使用NASA、BMW i3、斯坦福大学电池数据集和本研究收集的Musoshi品牌L5 EV真实电池数据,为电池荷电状态SoC预测提供新视角。研究主要目标是将Transformer模型应用于真实电池数据,评估其作为EV续航优化和电池管理的重大步骤。研究中Transformer模型实现最佳结果,RMSE值最接近1约0.99。
English Abstract
Batteries play a critical role in Electric Vehicle (EV) systems devices. The safety and performance of these applications rely on accurate Battery Management Systems (BMS) to monitor and optimize battery performance. Traditional BMS systems face challenges in charge prediction processes due to complex chemical processes and battery aging, leading to faults. The absence of a perfect sensor highlights limitations in measurement issues arising from external factors, especially sensor noise. Therefore, there is a need for algorithms that can solve the real-world battery charge prediction problem. This study compares an innovative solution, the Transformer model, with traditional Long Short-Term Memory (LSTM), Bi-directional LSTM (Bi-LSTM) models, and Support Vector Regression (SVR). This research aims to provide new perspectives on Battery State of Charge (SoC) predictions using NASA, BMW i3, Stanford University Battery Datasets, and real-world battery data obtained from L5 EV of the Musoshi brand collected for this work. This research’s primary objective is to apply the Transformer model to real-world battery data, evaluating it as a significant step in EV range optimization and battery management. The Transformer model in the study achieved the best result with Root Mean Square Error (RMSE) value closest to 1 (~0.99).
S
SunView 深度解读
该Transformer模型SOC估计技术对阳光电源电池管理系统产品线有重要应用价值。阳光车载OBC和储能BMS需要高精度SOC估计来优化充电策略和电池保护。Transformer相比传统LSTM的性能优势值得阳光BMS算法借鉴。RMSE接近1的卓越精度可显著提升阳光BMS的SOC估计准确性。该技术结合阳光多品牌电池兼容性测试数据,可开发更通用的SOC估计模型。Transformer模型的注意力机制对阳光处理传感器噪声和提升鲁棒性有启发,可支撑阳光开发更智能可靠的BMS产品。