← 返回
储能系统技术 储能系统 SiC器件 深度学习 ★ 5.0

基于初级侧EMF相量估计的IPT系统参数识别及输出电压和电流控制

Parameter Identification and Output Voltage and Current Control of the IPT System Based on the Primary-Side EMF Phasor Estimation

作者 Shaishai Zhao · Jianfei Chen · Chengzhi Li · Jiaqi Chi
期刊 IEEE Journal of Emerging and Selected Topics in Power Electronics
出版日期 2025年7月
技术分类 储能系统技术
技术标签 储能系统 SiC器件 深度学习
相关度评分 ★★★★★ 5.0 / 5.0
关键词 功率变换器 关键参数设计 人工智能 性能估计模型 粒子群优化方法
语言:

中文摘要

提出基于初级侧反电动势EMF相量估计的感应电力传输IPT系统参数识别方法和输出电压电流控制策略。该方法无需实时通信即可实现恒压恒流CC/CV电池充电。通过估计初级侧EMF相量推导系统参数并设计控制算法。实验结果验证所提方法在LCC-S补偿IPT系统中的有效性。

English Abstract

The performance of a power converter is closely related to the selection of circuit parameters. However, the mainstream parametric design methods at present are overly dependent on humans. It is often not possible to obtain the best combination of key parameters. Therefore, an artificial intelligence-based design method for the key parameters is proposed, which aims to realize the best performance and automated design process. Firstly, a performance estimation model (PEM) for power converters is developed that considers the physical law-attention mechanism (AM). It incorporates AM into a physical information neural network and automatically builds the mapping model of design parameters and objectives. The design objectives represent the different performances of the converter. Secondly, the particle swarm optimization method is used to realize the automated search for the best combination of design parameters. Its optimization ability in discontinuous space is improved by making discrete variables continuous. Finally, the superiority of the proposed method is proved by the comparison experiment and the scalability verification experiment.
S

SunView 深度解读

该初级侧控制研究对阳光电源无线充电系统简化有重要价值。无需通信的CC/CV控制方法可降低阳光OBC无线充电系统复杂度和成本,提高可靠性。EMF相量估计技术可应用于阳光iSolarCloud平台智能充电算法。