← 返回
储能系统技术 储能系统 深度学习 ★ 5.0

基于参数辨识方法的轻量化无人水下航行器无线充电系统的恒流恒压充电策略

Constant Current and Constant Voltage Charging Strategy for Lightweight Unmanned Underwater Vehicle’s Wireless Power Transfer System via Parameter Identification Method

作者 Yayu Ma · Zhaoyong Mao · Bo Li · Bo Cheng · Bo Liang · Jiale Wang
期刊 IEEE Journal of Emerging and Selected Topics in Power Electronics
出版日期 2025年7月
技术分类 储能系统技术
技术标签 储能系统 深度学习
相关度评分 ★★★★★ 5.0 / 5.0
关键词 无线电能传输 水下无人航行器 LCC - S补偿系统 BP神经网络 恒流 - 恒压充电
语言:

中文摘要

无线充电技术因其安全性和自动化特性,成为无人水下航行器(UUV)最具潜力的补能方式,而轻量化设计对UUV尤为重要。本文建立了LCC-S补偿型无线充电系统的直流输入-输出模型,无需在UUV端增设电力电子与通信装置。提出一种基于反向传播神经网络(BPNN)的输出预测模型与控制策略,仅利用初级侧直流信息实现次级侧输出预测,省去反馈链路,简化数据采集与处理,支持轻量化设计并实现恒流-恒压(CC-CV)充电。BPNN的非线性拟合能力有效补偿了零电压开关、导体及涡流损耗等难以精确建模的非线性因素,提升了预测精度。实验表明,系统启动响应快、稳态精度高、动态响应良好,最大稳态电流和电压预测误差分别为2.21%和1.369%,启机及负载突变调整时间约1秒。

English Abstract

Wireless power transfer (WPT) technology is the most potential power replenishment for unmanned underwater vehicles (UUVs) due to its safety and automation. Furthermore, lightweight design of UUVs is a pressing pursuit. To this end, a DC input-output model of the LCC-S compensated WPT system is established, eliminating the need for additional power electronics and communication devices on UUVs. To improve output prediction accuracy and enable constant current-constant voltage (CC-CV) charging, the back propagation neural network (BPNN) prediction model and control strategy without secondary side feedback is first proposed, which uses the primary side DC information to predict the output of the UUV side with the help of BPNN, simplifies data acquisition and processing, enabling UUV lightweighting design and CC-CV wireless charging. The BPNN’s nonlinear fitting capability addresses system components that are difficult to model accurately, such as Zero Voltage Switching (ZVS), conductor and eddy current losses, thus improving output prediction accuracy. Simulations and experiments show that the system performs well in startup, steady-state accuracy and transient response. An experimental prototype was constructed, and the proposed BPNN method achieved a maximum steady-state prediction error of 2.21% and 1.369%, compared to the measured current and voltage. The adjustment time is approximately 1 second during the start-up and sudden load changes.
S

SunView 深度解读

该无线充电系统的LCC-S补偿拓扑与BPNN参数辨识技术对阳光电源充电桩产品线具有重要借鉴价值。其单侧控制架构省去通信反馈链路的设计思路,可应用于电动汽车无线充电场景,简化车载端设备复杂度。基于初级侧信息的输出预测方法与阳光电源ST储能系统的智能控制技术理念契合,BPNN对ZVS、涡流损耗等非线性因素的补偿能力可提升功率变换器建模精度。CC-CV充电策略及1秒级动态响应性能可优化OBC充电机的控制算法,结合iSolarCloud平台的数据处理能力,该参数辨识方法有望扩展至储能变流器的无传感器控制与预测性维护领域,降低系统成本并提升可靠性。