← 返回
储能系统技术 储能系统 SiC器件 ★ 5.0

基于数字孪生建模技术与优化算法的三相AC-DC变换器LC参数辨识

LC Parameters Identification for a Three-Phase AC–DC Converter Through Digital Twin Modeling Technique and Optimization Algorithms

语言:

中文摘要

数字孪生技术通过高保真数字模型实时复现物理系统行为,正深刻变革能量转换领域。为实现预测性维护,需精准监测影响关键部件健康状态的参数。本文提出一种基于数字孪生的三相AC-DC开关变换器参数估计方法,采用粒子群优化(PSO)、遗传算法(GA)和模拟退火(SA)进行L型交流滤波器电感与直流侧电容参数辨识。在平衡与不平衡工况下验证了方法的鲁棒性与可行性,并对比了三种优化算法性能。结果表明该方法在系统辨识与状态监测中具有应用潜力。

English Abstract

The digital twin (DT) technology is transforming the energy conversion industry by replicating in real time the behavior of physical systems (PSs) by means of high-fidelity digital models (DMs). Specifically, the close monitoring of parameters influencing the health status of components prone to failure is essential for the application of predictive maintenance strategies. This capability is made achievable through the use of the DT concept and the advanced optimization algorithms introduced in this work. This article presents the parameters’ estimation approach based on the DT method applied to three-phase ac-dc switching converters. First, a particle swarm optimization (PSO) algorithm is employed to estimate the characteristics of the L-type ac filter and the dc capacitance. The same approach has been repeated using the genetic algorithm (GA) and the simulated annealing (SA) as optimization algorithms. Balanced and unbalanced situations have been tested to demonstrate the robustness and feasibility of the proposal, and the comparison between the three proposed optimization algorithms has been carried out. The results show the potential of the procedure for application in system identification and condition monitoring.
S

SunView 深度解读

该数字孪生参数辨识技术对阳光电源ST系列储能变流器和SG系列光伏逆变器具有重要应用价值。通过PSO/GA/SA算法实时辨识LC滤波参数和直流侧电容,可直接应用于PowerTitan储能系统的预测性维护,监测电容老化和电感饱和等关键健康指标。该方法在不平衡工况下的鲁棒性验证,契合阳光电源1500V高压系统和三电平拓扑的复杂运行场景。结合iSolarCloud云平台,可实现远程参数监测与故障预警,提升SiC器件应用系统的可靠性。建议将该技术集成到构网型GFM控制器中,通过在线参数辨识优化控制策略,延长关键部件寿命,降低运维成本。