← 返回
SiC低压MOSFET的温度缩放与C–V建模用于IC设计
Temperature Scaling and C–V Modeling of SiC Low-Voltage MOSFETs for IC Design
| 作者 | Abu Shahir Md Khalid Hasan · Md Maksudul Hossain · Md. Zahidul Islam · Muhammad Majharul Islam · Shamim Ahmed · H. Alan Mantooth |
| 期刊 | IEEE Journal of Emerging and Selected Topics in Power Electronics |
| 出版日期 | 2024年10月 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 SiC器件 |
| 相关度评分 | ★★★★ 4.0 / 5.0 |
| 关键词 | 碳化硅MOSFET 高温SPICE模型 BSIM4SiC模型 C - V特性 参数提取方法 |
语言:
中文摘要
本文提出了一种适用于高温环境的碳化硅(SiC)nMOS和pMOS器件SPICE模型及其瞬态特性。该工作在BSIM4SiC模型基础上扩展,重点研究界面陷阱对高温性能及电容-电压(C–V)特性的影响。提出了模型参数的高温缩放修正方法,并考虑了界面陷阱效应,定义了本征载流子浓度与平带电压偏移方程。针对nMOS和pMOS开发了新的C–V参数提取方法,并描述了用于C–V测量的MOSCAP与多指MOSFET测试结构。仿真结果在高温下与实验数据吻合良好,验证了模型准确性。
English Abstract
A high-temperature (HT) SPICE model of the silicon carbide (SiC) nMOS and pMOS along with the transient characteristics is presented in this article. This work extends the BSIM4SiC model, which primarily addressed the dc characteristics of SiC MOSFETs with a focus on geometry scaling. The BSIM4SiC model has displayed superior accuracy to any other model published for SiC CMOS devices. In this article, the interface trap-related effects on HT performance and capacitance-voltage (C–V) characteristics of the BSIM4SiC model are investigated. The modifications required for model parameters for HT scaling are formulated, while the intrinsic carrier concentration and flat band voltage shift equations are also defined, accounting for the effects of interface traps. A new parameter extraction method for the C–V characteristics was developed for both nMOS and pMOS. The MOSCAP and multifingered MOSFET test structures for the C–V measurements are described. Both the simulated dc and C–V results are matched with the experimental results at high temperatures. The model optimization results of the dc characteristics for different geometries are provided with temperature scaling. The C–V characteristics of the nMOS and pMOS are demonstrated up to 300~^ C.
S
SunView 深度解读
该SiC低压MOSFET高温建模技术对阳光电源功率器件应用具有重要价值。针对ST系列储能变流器和SG光伏逆变器,精确的高温C-V特性模型可优化SiC器件驱动电路设计,降低开关损耗并提升高温环境可靠性。界面陷阱效应的温度缩放方法为功率模块热设计提供仿真依据,特别适用于沙漠、热带等极端工况下的PowerTitan储能系统。SPICE模型可集成到阳光电源自研功率模块的电路仿真平台,加速三电平拓扑和SiC驱动芯片的IC设计迭代,提升车载OBC等高功率密度产品的热管理性能,缩短研发周期并降低试错成本。