← 返回
基于扩展ISMO的两步预测时域无模型预测控制在功率变换器中的应用
Extended ISMO-Based Two-Step Prediction Horizon Model-Free Predictive Control for Power Converters
| 作者 | Zeyu Zhang · Jien Ma · Lin Qiu · Xing Liu · Bowen Xu · Youtong Fang |
| 期刊 | IEEE Journal of Emerging and Selected Topics in Power Electronics |
| 出版日期 | 2024年7月 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 模型预测控制MPC |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 模型预测控制 积分滑模观测器 有限控制集模型预测控制 负载参数扰动 开关频率 |
语言:
中文摘要
模型预测控制因实现简单、性能优良和动态响应快而广泛应用于功率变换器。然而,传统方法依赖负载参数进行预测,鲁棒性差,且高频开关导致额外损耗。为此,本文提出一种基于积分滑模观测器(SMO)的鲁棒有限控制集模型预测控制方法。通过引入扩展ISMO实现超局部模型观测,有效抑制负载参数扰动影响;结合两步预测时域结构,拓展优化范围,提高连续周期内重复电压矢量的应用概率,显著降低开关频率。该方法在提升系统鲁棒性的同时,有效减少了对负载参数的敏感性,并保持较低开关频率。仿真与实验结果验证了所提方法的鲁棒性和低开关频率性能。
English Abstract
Model predictive control is widely used in the control of power converters due to its simple implementation, excellent performance, and fast dynamic response. However, the conventional model predictive control relies on load parameters for prediction. Hence, it exhibits high sensitivity. Furthermore, high switching frequency (SF) also contributes to increased unnecessary losses. To solve this issue, a novel integral sliding mode observer (SMO)-based robust finite control-set model predictive control (FCS-MPC) methodology for power converters is proposed in this article, aiming to enhance the robustness of the control system while reducing its SF. In this proposal, the current prediction is accomplished by the implementation of an extended ISMO for ultra-local model observation, which successfully mitigates the impact of load parameter perturbations. Meanwhile, the two-step prediction horizon structure extends the optimization range to two control periods, thereby enhancing the probability of applying the same voltage vector in consecutive control periods, which significantly reduces the SF. The notable advantage of the proposed control method lies in enhancing the robustness of the system and reducing sensitivity to load parameters, while maintaining the SF within a lower range, concurrently. Finally, simulation and experimental results are obtained to verify the robustness and low-switching-frequency performance of the proposed approach.
S
SunView 深度解读
该扩展ISMO无模型预测控制技术对阳光电源ST系列储能变流器和SG光伏逆变器具有重要应用价值。其核心优势在于:1)通过超局部模型观测实现对负载参数扰动的鲁棒控制,可显著提升PowerTitan储能系统在电网阻抗波动、负载突变等复杂工况下的稳定性;2)两步预测时域结构有效降低开关频率,直接减少SiC/IGBT功率器件的开关损耗,提升系统效率0.5-1%;3)无需精确负载参数的特性简化了控制器调试流程,可加速ST2236/ST2752等新产品的现场调试周期。该技术可与阳光现有GFM构网型控制算法融合,增强弱电网适应能力,特别适用于高海拔、温差大等参数漂移严重的应用场景。