← 返回
基于管状深度Koopman模型预测控制的飞轮储能系统用于风电平滑
Flywheel energy storage system controlled using tube-based deep Koopman model predictive control for wind power smoothing
| 作者 | Jun Zhou · Yubin Ji · Changyin Sun |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 381 卷 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 模型预测控制MPC |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | A tube-based deep Koopman MPC is proposed for FESS control for wind power smoothing. |
语言:
中文摘要
摘要 本文提出了一种利用飞轮储能系统(FESS)并结合一种新型管状深度Koopman模型预测控制(MPC)方法实现风电平滑的策略。尽管风能具有减少碳排放的潜力,但由于风速变化引起的功率波动,其应用面临显著挑战。为应对这些波动,本文采用FESS,因其具备快速充放电响应能力。为了控制FESS,采用深度神经网络(DNN)逼近Koopman算子以实现系统线性化,从而能够应用线性MPC控制器。为进一步增强系统的鲁棒性,引入了一种管状MPC方法,该方法由一个标称MPC和一个辅助MPC组成。本文严格建立了标称系统的稳定性以及受控实际系统输入到状态稳定(ISS)性。通过仿真,并与PID控制及传统MPC方法进行比较,验证了所提方法的有效性和鲁棒性。
English Abstract
Abstract This paper introduces an approach for wind power smoothing using a flywheel energy storage system (FESS) controlled by a novel tube-based deep Koopman model predictive control (MPC) method. Wind power, despite its potential to reduce carbon emissions , faces significant challenges due to power fluctuations caused by variable wind speeds . To address these fluctuations, FESS is proposed as a result of its rapid charge–discharge response capability. To control the FESS, a deep neural network (DNN) is used to approximate the Koopman operator for system linearization, allowing the application of a linear MPC controller. To enhance robustness, a tube-based MPC approach comprising a nominal MPC and an ancillary MPC is introduced. The stability of the nominal system and the input-to-state stability (ISS) of the controlled actual system are rigorously established. The effectiveness and robustness of the proposed method are demonstrated through simulations and comparisons with PID and conventional MPC method.
S
SunView 深度解读
该飞轮储能平滑控制技术对阳光电源ST系列储能变流器及PowerTitan系统具有重要借鉴价值。基于深度Koopman算子的管式MPC方法可增强储能系统应对风电波动的鲁棒性,其非线性系统线性化思路可优化现有PCS的GFM/GFL控制策略。该技术与阳光电源iSolarCloud平台的预测性维护功能结合,可提升风储耦合场景下的功率平滑能力和系统稳定性,为大规模新能源并网提供先进控制算法支撑。