← 返回
储能系统技术 储能系统 模型预测控制MPC ★ 5.0

结合数据校正的模型预测控制在LHTES功率调控中的应用:数据中心部署与案例研究

Model predictive control incorporating data correction for LHTES power controlling: Deployment and case study in data center

作者 Jiacheng Gaoa · Yanlong Lva · Lejun Feng · Jun Sui · Hongguang Jin
期刊 Applied Energy
出版日期 2025年1月
卷/期 第 401 卷
技术分类 储能系统技术
技术标签 储能系统 模型预测控制MPC
相关度评分 ★★★★★ 5.0 / 5.0
关键词 Built a high-performance LHTES model via theoretical modeling and experimental calibration.
语言:

中文摘要

摘要 相变潜热储能(LHTES)技术可通过利用可再生能源和实现削峰填谷,有效降低数据中心的冷却能耗。然而,由于缺乏适用于实际工程应用的放电功率控制方法,该技术的大规模推广应用受到限制。为应对这一挑战,本研究采用结合数据校正的模型预测控制(MPC)策略,解决LHTES系统的功率控制难题,并在中国某数据中心冷却系统改造项目中进行了验证。首先设计了一种高效的LHTES装置,并通过一系列充/放热实验表征其储热特性。基于装置结构建立了温度场模型,利用传热流体与相变材料(PCM)温度的实验数据进行复合参数辨识,在0.5–1.5 m³/h的流量范围内实现了低于5%的预测误差。为缓解因运行工况突变及累积误差导致的模型失准问题,引入基于扩展卡尔曼滤波的同化方法,实现模型的实时校正。在此基础上实施了基于MPC的LHTES功率控制,控制误差低至3%。为验证所提出模型在实际工程应用中的可行性,研究在中国某小型数据中心开展了实证测试。结果表明,将LHTES系统与优化运行策略相结合,可使全局功率控制的相对误差降低至1.52%,同时实现21.5%的节能率以及60.3%的运行成本降幅。该策略有效解决了LHTES应用中的控制难题,为相变储能技术在数据中心中的落地实施提供了可靠的技术支撑。

English Abstract

Abstract Latent Heat Thermal Energy Storage (LHTES) can effectively reduce cooling energy consumption in data centers through renewable energy utilization and peak load management. However, the lack of practical discharging power control methods for real-world engineering applications has hindered their widespread adoption. To address this challenge, this study used the model predictive control (MPC) strategy incorporating data correction to solve the power control challenges of LHTES, and validated in a data center cooling system retrofit project. Specifically, an efficient LHTES unit was first designed, with a series of charging/discharging experiments conducted to characterize its thermal storage properties. Based on the unit's structure, a temperature field model was established, which achieved a prediction error below 5 % within the flow rate range of 0.5–1.5 m 3 /h through composite parameter identification using experimental data on heat transfer fluid and phase change material (PCM) temperatures. To mitigate model divergence caused by abrupt operating condition changes and accumulated errors, an assimilation method based on extended Kalman filtering was employed for real-time model correction. Building on this model, MPC-based LHTES power control was implemented, achieving a control error as low as 3 %. To verify the feasibility of the proposed model in practical engineering applications, validation was conducted in a small-scale data center in China. Results showed that integrating the LHTES system with optimized operation strategies reduced the relative error in global power control to 1.52 %, while achieving 21.5 % energy savings and 60.3 % operational cost reduction. This strategy addresses the control challenge in LHTES applications, providing reliable technical support for the implementation of LHTES technology in data centers.
S

SunView 深度解读

该LHTES相变储能MPC控制技术对阳光电源ST系列储能系统和数据中心解决方案具有重要参考价值。研究中采用的模型预测控制结合卡尔曼滤波数据校正方法,可借鉴应用于PowerTitan液冷储能系统的热管理优化,将功率控制误差降至3%以内。特别是在数据中心场景实现21.5%节能和60.3%成本削减的案例,验证了储能系统与冷却负荷协同控制的商业价值,可为阳光电源iSolarCloud平台的预测性维护和智能调度算法提供技术启发,推动储能PCS在工商业削峰填谷和温控场景的深度应用。