← 返回
储能系统技术 储能系统 模型预测控制MPC ★ 5.0

基于耦合半经验电-热与老化模型的电池老化感知自适应模型预测控制

Battery aging-aware adaptive model predictive control based on coupled semi-empirical electro-thermal and aging models

作者 Xabier Dorronsoro · Ricardode Castro · Jorge Varela Barrerasc · Erik Garayalde · Unai Iraol
期刊 Applied Energy
出版日期 2025年1月
卷/期 第 401 卷
技术分类 储能系统技术
技术标签 储能系统 模型预测控制MPC
相关度评分 ★★★★★ 5.0 / 5.0
关键词 Battery aging-rate aware adaptive weighting MPC strategy.
语言:

中文摘要

摘要 本文提出了一种考虑老化速率的非线性模型预测控制(MPC)策略,用于电池储能系统,该策略集成了一种经过实验验证的半经验性电-热与退化耦合模型,能够同时考虑日历老化和循环老化因素,而这些因素在传统的能量管理方法中常常被忽略。本文的一个关键贡献是引入了一种自适应加权方法,该方法根据电池的老化状态——主要由时间依赖性退化因素驱动——动态调整MPC代价函数中的权重。这种自适应机制改善了不同预测时间范围内的控制决策,与标准MPC相比,分别使电池退化程度和总运行成本最高降低了262.7%和44.51%。

English Abstract

Abstract This paper presents an aging-rate aware nonlinear model predictive control (MPC) strategy for battery energy storage systems, integrating a semi-empirical, experimentally validated electro-thermal and degradation model to account for both calendar and cycle aging factors, often neglected in conventional energy management approaches. A key contribution is the introduction of a adaptive weighting method that dynamically adjusts the weights of the MPC cost function according to the battery’s aging state, primarily driven by time-dependent degradation factors. This adaptive mechanism improves control decisions across varying prediction horizons, leading to reductions in both battery degradation and total operating costs by up to 262.7 % and 44.51 %, respectively, when compared to a standard MPC.
S

SunView 深度解读

该电池老化自适应MPC技术对阳光电源ST系列储能变流器及PowerTitan系统具有重要应用价值。通过集成电热耦合与老化模型,动态调整控制权重,可使储能系统在全生命周期内优化充放电策略,降低电池退化率达262.7%。该方法可融入阳光电源iSolarCloud平台的预测性维护模块,结合GFM/GFL控制技术,实现储能电站经济性与寿命的协同优化,为大规模储能项目提供差异化竞争优势,延长电池质保期并降低LCOS度电成本。