找到 1 条结果

排序:
储能系统技术 储能系统 模型预测控制MPC ★ 5.0

基于扩展ISMO的两步预测时域无模型预测控制在功率变换器中的应用

Extended ISMO-Based Two-Step Prediction Horizon Model-Free Predictive Control for Power Converters

Zeyu Zhang · Jien Ma · Lin Qiu · Xing Liu 等6人 · IEEE Journal of Emerging and Selected Topics in Power Electronics · 2024年7月

模型预测控制因实现简单、性能优良和动态响应快而广泛应用于功率变换器。然而,传统方法依赖负载参数进行预测,鲁棒性差,且高频开关导致额外损耗。为此,本文提出一种基于积分滑模观测器(SMO)的鲁棒有限控制集模型预测控制方法。通过引入扩展ISMO实现超局部模型观测,有效抑制负载参数扰动影响;结合两步预测时域结构,拓展优化范围,提高连续周期内重复电压矢量的应用概率,显著降低开关频率。该方法在提升系统鲁棒性的同时,有效减少了对负载参数的敏感性,并保持较低开关频率。仿真与实验结果验证了所提方法的鲁棒性和低开关...

解读: 该扩展ISMO无模型预测控制技术对阳光电源ST系列储能变流器和SG光伏逆变器具有重要应用价值。其核心优势在于:1)通过超局部模型观测实现对负载参数扰动的鲁棒控制,可显著提升PowerTitan储能系统在电网阻抗波动、负载突变等复杂工况下的稳定性;2)两步预测时域结构有效降低开关频率,直接减少SiC/...