← 返回
储能系统技术 储能系统 模型预测控制MPC 深度学习 ★ 5.0

基于学习增强型模型预测控制的混合储能系统实时能量管理策略及其在波浪能转换器中的应用

Real-Time Energy Management of Hybrid Energy Storage System with Application to Wave Energy Converters: A Learning-Augmented MPC Strategy

作者 Xuanyi Zhu · Zechuan Lin · Xuanrui Huang · Kemeng Chen · Yifei Han · Xi Xiao
期刊 IEEE Transactions on Sustainable Energy
出版日期 2025年7月
技术分类 储能系统技术
技术标签 储能系统 模型预测控制MPC 深度学习
相关度评分 ★★★★★ 5.0 / 5.0
关键词 波浪能转换器 混合储能系统 模型预测控制 学习增强策略 能量管理
语言:

中文摘要

将混合储能系统(HESS)集成到波浪能转换器(WEC)中可有效抑制多时间尺度下的功率波动,但需依赖高效的能量管理策略(EMS)。模型预测控制(MPC)虽能逼近全局最优并满足约束,但非线性优化问题带来高计算负担,且多目标权衡下的代价函数权重因子(WF)整定困难。为此,本文提出一种学习增强型MPC策略。该方法结合模糊逻辑非对称动作裁剪技术以降低计算耗时,并引入高效暖启动Q学习框架实现WF的在线自整定。为缩小仿真与实际间的差距,设计了基于神经网络的电流预测器以感知功率转换中的非线性损耗。仿真与实验结果表明,所提策略在降低能量损耗、电池老化及MPC计算负担方面表现优越。

English Abstract

Integrating hybrid energy storage systems (HESSs) into wave energy converters (WECs) can mitigate power fluctuations of WECs across multiple timescales, provided that an effective energy management strategy (EMS) is implemented. Model predictive control (MPC) is the mainstream EMS for HESSs, as it typically yields a control solution close to the global optimum while satisfying constraints. However, MPC faces a high computational burden when the optimal control problem is nonlinear. More importantly, considering multiple competing objectives, tuning weighting factors (WFs) in the MPC cost function is also challenging. To tackle these challenges, this article proposes a learning-augmented MPC strategy to optimize energy management for the HESS in WECs. The strategy first utilizes a fuzzy logic-based asymmetric action trimming technique to reduce MPC computational time. Further, a warm-start Q-learning (QL) framework with high learning efficiency is applied to obtain the WF online tuning method. To bridge the simulation-to-reality gap in the QL framework, the article designs a neural network-based current predictor, aiming to sense the nonlinear power loss during power conversion. Finally, simulations and experiments demonstrate the superior performance of the proposed strategy in reducing energy loss, battery degradation, and MPC computational burden.
S

SunView 深度解读

该学习增强型MPC策略对阳光电源ST系列储能变流器及PowerTitan大型储能系统具有重要应用价值。其模糊逻辑动作裁剪技术可显著降低MPC实时计算负担,适配储能变流器DSP/FPGA控制平台;Q学习框架实现的权重因子在线自整定能优化多目标权衡(功率平滑、电池寿命、效率),提升ESS集成方案的全生命周期经济性。神经网络电流预测器对功率转换非线性损耗的建模思路,可应用于SiC/GaN器件的精准损耗预测与热管理优化。该混合储能管理策略亦可拓展至光储一体化系统,协同SG逆变器MPPT算法应对光伏出力波动,并为iSolarCloud平台提供智能EMS算法库,增强预测性维护能力。