← 返回
储能系统技术 储能系统 模型预测控制MPC 深度学习 ★ 5.0

考虑预测不确定性的电池储能系统最优管理以实现削峰和电池健康

Optimal BESS Management for Peak Load Shaving and Battery Health Under Prediction Uncertainty

作者 Lixin Li · Tim Kappler · Bernhard Schwarz · Nina Munzke · Xinliang Dai · Veit Hagenmeyer
期刊 IEEE Transactions on Sustainable Energy
出版日期 2025年7月
技术分类 储能系统技术
技术标签 储能系统 模型预测控制MPC 深度学习
相关度评分 ★★★★★ 5.0 / 5.0
关键词 电池储能系统 随机模型预测控制 负荷削峰 电池健康 预测不确定性
语言:

中文摘要

在现代电力系统中,为缓解可再生能源出力波动,部署电池储能系统(BESS)日益重要。然而,可再生能源与负荷预测的不确定性给BESS运行优化带来挑战。本文提出一种新颖的随机模型预测控制(SMPC)框架,兼顾削峰负荷与电池健康,并有效应对预测不确定性。该框架采用长短期记忆(LSTM)神经网络进行预测,并结合约束收紧技术构建滚动时域随机优化问题。基于德国某企业负荷数据的仿真结果表明,相比传统模型预测控制(MPC),该方法额外降低峰值取电功率99 kW(5.8%),验证了其处理不确定性的优势。

English Abstract

In modern power grids, integrating renewable energy sources (RESs), deploying battery energy storage systems (BESSs) is increasingly vital for mitigating power fluctuations. However, optimizing BESS operation remains challenging amidst uncertainties in both RES and load forecasting. This paper proposes a novel stochastic model predictive control (SMPC) framework for BESS operation, focusing on peak load shaving and battery health while addressing prediction uncertainties. The proposed framework employs a long short-term memory (LSTM) neural network for forecasting and integrates a constrainttightening technique into a stochastic optimization (SO) problem with a receding horizon. Based on the load profile of a company in Germany, the proposed framework achieves an additional reduction of 99 kW(5.8%) in peak grid take-out power compared with the traditional model predictive control (MPC) approach, demonstrating its advantage in addressing uncertainties.
S

SunView 深度解读

该SMPC框架对阳光电源ST系列储能变流器和PowerTitan大型储能系统具有重要应用价值。研究提出的LSTM预测结合约束收紧技术可直接集成到iSolarCloud云平台的智能调度模块,提升储能系统在工商业削峰场景下的经济性。相比传统MPC额外降低5.8%峰值功率的效果,可优化ST2236/2500UX等储能变流器的功率调度策略,同时兼顾电池健康管理延长系统寿命。该随机优化方法对处理光储一体化系统中光伏出力与负荷预测不确定性具有直接借鉴意义,可增强阳光电源ESS集成方案在微电网和工业园区应用中的鲁棒性与竞争力。