← 返回
基于灰色关联分析与Transformer-GCAN模型的县域分布式光伏日前功率预测
County-level Distributed PV Day-ahead Power Prediction based on Grey Correlation Analysis and Transformer-GCAN Model
| 作者 | Pei Zhang · Bin Zhang · Jinliang Yin · Jie Shi |
| 期刊 | IEEE Transactions on Sustainable Energy |
| 出版日期 | 2025年7月 |
| 技术分类 | 光伏发电技术 |
| 技术标签 | 深度学习 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 分布式光伏 县级日前功率预测 灰色关联分析 Transformer - GCAN模型 时空特征融合 |
语言:
中文摘要
县域内分布式光伏电站具有显著的时空相关性,仅考虑时间相关性难以满足日前调度需求。本文提出一种基于灰色关联分析和Transformer-图卷积注意力网络(Transformer-GCAN)的县域日前功率预测方法。首先通过灰色关联度确定光伏电站间的关联关系并构建站间图结构;其次利用Transformer提取各节点时间特征,并结合图卷积网络引入图注意力机制动态捕捉空间特征;最后通过全连接网络融合时空特征实现县域总功率预测。算例结果表明,相较于Transformer-GCN模型,该方法在晴天、多云和雨天的均方根误差分别降低11.90%、15.72%和19.61%。
English Abstract
The distributed photovoltaic (PV) power stations within the entire county exist spatiotemporal correlation. Merely considering temporal correlation makes it challenging to meet the day-ahead scheduling demands. This paper proposes a distributed PV county-level day-ahead power prediction method based on grey relational analysis and the Transformer-Graph Convolutional Attention Network (Transformer-GCAN) model. Firstly, the grey relational degree is used to measure the relevance between each distributed PV stations, and the connection relationship of the station graph is determined based on the analysis results. Secondly, the Transformer network is utilized to extract the temporal features of each PV sequence in the graph. Based on the Graph Convolutional Network (GCN) model, a Graph Attention Mechanism (GAT) is introduced to dynamically extract spatial features between each photovoltaic station in the graph. Finally, the integration of spatiotemporal features is achieved through a fully connected neural network, enabling day-ahead power prediction at the county level. Case analysis results demonstrate that compared with the Transformer-GCN model, the Root Mean Square Error (RMSE) of the power prediction model proposed in this paper is reduced by 11.90%, 15.72% and 19.61% respectively in sunny days, cloudy days and rainy days.
S
SunView 深度解读
该县域分布式光伏功率预测技术对阳光电源iSolarCloud智能运维平台具有重要应用价值。通过灰色关联分析构建站间拓扑结构,结合Transformer-GCAN模型捕捉时空特征,可显著提升日前功率预测精度(不同天气条件下RMSE降低11.90%-19.61%)。该方法可直接集成到iSolarCloud平台的智能诊断模块,为县域级分布式光伏集群提供精准调度依据;同时可优化SG系列逆变器的功率控制策略,配合PowerTitan储能系统实现更优的削峰填谷和需量管理。图注意力机制动态捕捉站间关联的思路,对构建多站点协同控制算法具有创新启发意义,可提升区域级新能源消纳能力。