← 返回
光伏发电技术 储能系统 SiC器件 ★ 5.0

考虑风电和光伏预测的嵌入双规则分布式近端策略优化

Distributed Proximal Policy Optimization with Embedded Dual Rules for Power Systems Considering Wind and Photovoltaic Forecasting

作者 Peng Lu · Yuanbao Wu · Junhao Li · Ning Zhang · Kangping Li · Mohammad Shahidehpour
期刊 IEEE Transactions on Sustainable Energy
出版日期 2025年6月
技术分类 光伏发电技术
技术标签 储能系统 SiC器件
相关度评分 ★★★★★ 5.0 / 5.0
关键词 可再生能源电力系统 风光功率预测误差 分布式近端策略优化模型 最优调度决策 风光消纳
语言:

中文摘要

针对风电与光伏功率预测误差导致的最优调度偏差问题,本文提出一种嵌入双规则的分布式近端策略优化(DPPO)模型。该模型将预测及误差校正信息嵌入DPPO状态空间,并以正则形式在神经网络中融入电网功率平衡与潮流约束,结合预设规则实现状态评估与动作执行的协同优化。基于某省电网实际数据在改进IEEE-30节点系统上的仿真结果表明,所提方法能有效应对可再生能源预测不确定性,在提升风电消纳、降低运行成本及增强调度适应性方面优于三种先进方法。

English Abstract

Most renewable energy power systems are created to provide more resilient, reliable, economical, sustainable and secure power support services for loads. However, owing to the inherent forecasting errors of wind and photovoltaic (PV) power, existing optimal dispatch decisions based on forecasting errors have biases. To address this issue, this paper proposes the distributed proximal policy optimization (DPPO) model with embedded dual rules for optimal power dispatch that considers wind and PV power forecasting error correction. The proposed model embeds forecasting and error correction information into the DPPO state space. Moreover, considering the physical characteristics and operational security constraints of the power grid, power balance and flow constraints are embedded in the DPPO network in a regular form. Finally, by integrating the established rules, wind and PV forecasting, and error correction information, the proposed model achieves optimal dispatch decisions through the calculation of state and execution of prescribed actions. The proposed method is applied and tested on a modified IEEE-30 bus system using actual data from a provincial power grid. The numerical results demonstrate that the proposed method effectively addresses optimal dispatch decisions caused by wind and PV forecasting errors. Compared with three other advanced methods, the proposed approach has significant advantages in promoting wind power accommodation, reducing operating costs, and enhancing the adaptability of optimal dispatch to uncertainty.
S

SunView 深度解读

该嵌入双规则DPPO调度技术对阳光电源PowerTitan储能系统和iSolarCloud智能运维平台具有重要应用价值。其预测误差校正机制可直接集成到ST系列储能变流器的EMS能量管理策略中,通过实时修正风光预测偏差优化充放电决策,提升储能系统在新能源消纳场景下的经济性。分布式优化架构与阳光电源多站点协同控制理念高度契合,可应用于区域级ESS集成方案的多储能站协调调度。建议将该强化学习算法与iSolarCloud云平台的预测性维护模块融合,构建自适应调度引擎,在降低弃风弃光率的同时减少储能循环损耗,增强电网侧储能产品的市场竞争力。