← 返回
光伏发电技术 储能系统 深度学习 ★ 5.0

基于残差视觉重构器的天空图像序列超短期太阳能功率预测

Ultra-Short-Term Solar Power Prediction Using Sky Image Sequences by a Residual Vision Reformer

作者 Razieh Rastgoo · Nima Amjady · Shunfu Lin · S. M. Muyeen
期刊 IEEE Transactions on Sustainable Energy
出版日期 2025年6月
技术分类 光伏发电技术
技术标签 储能系统 深度学习
相关度评分 ★★★★★ 5.0 / 5.0
关键词 太阳能发电预测 深度学习模型 云图像分析 超短期预测 时空特征提取
语言:

中文摘要

太阳能发电受云层变化影响显著,具有较强不确定性,给可再生能源系统的稳定性带来挑战。准确的超短期太阳能功率预测有助于提升电网调度与运行效率。本文提出一种基于深度学习的预测模型,包含三个核心模块:多流视频视觉Transformer(MS-ViViT)用于提取天空图像序列的时空特征;融合改进型Reformer(Fused I-Reformer)通过融合编码器和新型损失函数增强序列学习能力;以及带注意力机制的残差全连接网络(ARFC)用于最终功率预测。在六个真实数据集上与36种对比模型进行的实验表明,该方法在七项指标下均表现出优越性能。

English Abstract

The unpredictable nature of solar power generation, largely influenced by fluctuating cloud cover, poses a challenge to the stability of renewable energy systems. Considering this, accurate forecasting of solar power can lead to better grid management and operation. With the advent of deep learning models, various models have been suggested to enhance the ultra-short-term solar power forecasting performance. Given that cloud images offer more direct and comprehensive information about cloud patterns compared to the numerical weather prediction data, analyzing cloud images allows for more precise and efficient cloud change predictions, leading to a more accurate ultra-short-term solar power forecasting. In this way, aiming to enhance the forecasting performance, in this paper, we introduce a deep learning-based model, including three main blocks. In the first block, a Multi-Stream Video Vision Transformer (MS-ViViT) model is proposed for extracting different types of spatio-temporal features from the input image sequences. The output features from the first block are input to the second block, Fused Improved Reformer (Fused I-Reformer), including three Improved Reformer (I-Reformer) models equipped with a Fused Encoder as well as a new loss function for sequence learning. Finally, an Attentive Residual Fully Connected (ARFC) model is proposed for solar power value prediction. The comparison results with 36 comparative models on six real-world datasets using seven evaluation metrics confirm the effectiveness of the proposed ultra-short-term solar power forecasting model.
S

SunView 深度解读

该基于天空图像序列的超短期光伏功率预测技术对阳光电源智能运维体系具有重要应用价值。可直接集成至iSolarCloud云平台,通过部署天空相机与深度学习模型,实现5-30分钟级功率预测,显著提升SG系列逆变器的MPPT算法响应速度。对于PowerTitan大型储能系统,该技术可优化充放电策略,通过提前预知云层遮挡导致的功率波动,配合ST系列储能变流器实现毫秒级功率补偿,减少电网冲击。其多模态时空特征提取方法可启发构网型GFM控制算法改进,增强光储耦合系统的惯量支撑能力。建议在工商业光储电站试点部署,验证预测精度对储能系统循环寿命的改善效果。