← 返回
储能系统技术 储能系统 模型预测控制MPC ★ 5.0

基于MIMO模糊逻辑控制器的热-混合储能系统近似最优能量管理

Approximate Optimal Energy Management of Thermal-HESS System for MIMO Fuzzy Logic Controller Based AGC

作者 Zao Tang · Jia Liu · Yikui Liu · Tong Su · Pingliang Zeng
期刊 IEEE Transactions on Sustainable Energy
出版日期 2024年10月
技术分类 储能系统技术
技术标签 储能系统 模型预测控制MPC
相关度评分 ★★★★★ 5.0 / 5.0
关键词 混合储能系统 自动发电控制 最优运行策略 随机模型预测控制 模糊逻辑控制器
语言:

中文摘要

相较于单一储能装置,混合储能系统(HESS)在自动发电控制(AGC)指令跟踪中具有优势,并可降低储能投资成本。传统控制方法虽能在特定时刻匹配AGC指令,但多时段协调性不足,易导致频繁无序充放电,缩短系统寿命。为此,本文提出一种热-HESS系统的近似最优运行策略,以提升机组AGC性能与储能能量管理能力。首先,采用自适应马尔可夫链预测方法预估AGC功率需求趋势;其次,构建考虑当前步与代价函数的随机模型预测控制(SMPC)优化模型。为降低SMPC多步优化带来的计算负担,进一步设计MIMO模糊逻辑控制器逼近SMPC的代价函数,有效满足实时计算与应用需求。数值仿真验证了所提方法在AGC指令跟踪与HESS能量管理中的有效性。

English Abstract

Compared to one-type of energy storage device, hybrid energy storage systems (HESSs) offer benefits for Auto generation control (AGC) command tracking and can reduce investment in energy storage. Traditional control method, although effective in meeting the matching of AGC commands at a specific moment, often lacks coordination across multiple time intervals, resulting in frequent and irregular charging/ discharging which reduces the overall lifetime. To address this, this paper presents an approximate optimal operation strategy for Thermal-HESS system, aiming to enhance the AGC performance of the generating unit and improve the energy management capability of the HESSs. Firstly, an auto-adjust Markov Chain prediction method is proposed to forecast the power demand of the AGC command tracking to determine power demand's tendency. Secondly, a stochastic model predictive control (SMPC)-based optimal model, which considers the current step and cost-to-go function, is proposed. However, the SMPC based model is multiple-step optimal operational problem, which will increase the computational burden of the controller. Therefore, this paper further designs a Multiple-Input-Multiple-output (MIMO) fuzzy logic controller to approximate the optimal alternative to the cost-to-go function of SMPC model, meeting the computational and application requirements more effectively. Finally, numerical case studies are conducted to demonstrate the effectiveness of the proposed method in AGC command tracking and HESSs energy management.
S

SunView 深度解读

该MIMO模糊逻辑控制的混合储能能量管理技术对阳光电源ST系列储能变流器和PowerTitan大型储能系统具有重要应用价值。研究提出的自适应马尔可夫链预测结合SMPC优化框架,可直接应用于阳光电源储能系统参与电网AGC调频服务场景,通过功率型与能量型储能的协调控制,优化ST储能变流器的充放电策略,减少频繁切换对电池寿命的影响。MIMO模糊逻辑控制器降低计算复杂度的思路,可融入阳光电源现有EMS能量管理系统,提升实时响应能力。该方法对完善PowerTitan系统的多时间尺度协调控制、增强AGC性能指标(K值考核)、延长储能系统全生命周期经济性具有显著价值,可作为iSolarCloud平台智能调度算法的技术储备。