← 返回
基于神经网络的LCC-HVDC系统准稳态动态增强模型
Dynamics Enhanced Quasi-Steady-State Model of LCC-HVDC Systems Based on Neural Network
| 作者 | Ke Yang · Xin Wang · Quan Zhang · Guangchao Geng · Quanyuan Jiang |
| 期刊 | IEEE Transactions on Power Delivery |
| 出版日期 | 2025年5月 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 深度学习 |
| 相关度评分 | ★★★★ 4.0 / 5.0 |
| 关键词 | LCC - HVDC系统 神经网络准稳态模型 电磁暂态模型 换相失败识别 仿真效率与精度 |
语言:
中文摘要
现有LCC-HVDC系统时域仿真在精度与效率之间存在权衡。电磁暂态模型虽精确但计算成本高,准稳态模型高效却难以准确描述换相过程,尤其在不对称故障下表现不足。本文提出一种基于神经网络的准稳态模型(NN-QSS),可精确刻画LCC-HVDC动态特性,有效识别换相失败,并适用于不平衡故障场景。通过改进的IEEE 39节点系统、中国某省级实际电网及CIGRE标准系统硬件在环验证表明,该模型在准稳态尺度下动态响应接近电磁暂态模型,换相失败识别准确率较现有方法提升18.8%。
English Abstract
Existing time-domain simulation of LCC-HVDC systems faces a trade-off between accuracy and efficiency. The electromagnetic transient model can accurately emulate detailed dynamic processes, but its computational inefficiency makes it impractical for engineering applications. In contrast, the quasi-steady-state model is computationally efficient but fails to adequately express the commutation process of LCC-HVDC systems and is incapable of performing in unbalanced fault scenarios. This paper proposes a neural network-based quasi-steady-state (NN-QSS) model to provide a powerful model for simulating, analyzing, and designing LCC-HVDC integrated power systems. Specifically, the NN-QSS model accurately captures and expresses the LCC-HVDC dynamic characteristics, especially in unbalanced fault scenarios, and is also capable of outputting the identification results of commutation failure occurrences as a sign during quasi-steady-state simulation. The proposed method has been validated using a modified IEEE 39-bus system, an actual provincial power system in China, and a CIGRE benchmark system based on hardware-in-the-loop. The experimental results show that the NN-QSS model is able to express dynamics close enough to electromagnetic transient models at the quasi-steady-state scale, and the commutation failure identification accuracy is improved by 18.8% relative to the existing methods.
S
SunView 深度解读
该神经网络增强的LCC-HVDC准稳态建模技术对阳光电源大型储能系统和光伏并网产品具有重要应用价值。在PowerTitan储能系统中,可借鉴NN-QSS方法建立储能变流器快速仿真模型,实现电网故障下的换相失败预测与主动保护,提升ST系列储能变流器在不对称故障工况下的低电压穿越能力。该技术将准稳态建模与深度学习结合的思路可应用于iSolarCloud平台的数字孪生系统,通过神经网络加速大规模新能源电站的电磁暂态仿真,实现毫秒级故障预判与控制策略优化。对于构网型GFM储能系统,该方法可精确刻画复杂工况下的动态特性,为控制参数整定提供高效仿真工具,仿真效率提升同时保持电磁暂态级精度。