← 返回
储能系统技术 储能系统 机器学习 深度学习 ★ 4.0

基于OT-IRM算法的棒-板长间隙操作冲击击穿电压海拔校正

Altitude Correction of Switching Impulse Breakdown Voltage for Rod-Plane Long-Gap Based on OT-IRM Algorithm

作者 Bingxue Yang · Yujian Ding · Xiaoxu Ma · Zhanhui Lu · Xiuyuan Yao · Yu Su
期刊 IEEE Transactions on Power Delivery
出版日期 2024年12月
技术分类 储能系统技术
技术标签 储能系统 机器学习 深度学习
相关度评分 ★★★★ 4.0 / 5.0
关键词 高海拔 长间隙放电 击穿电压预测模型 不变风险最小化神经网络集成算法 电网建设
语言:

中文摘要

随着海拔升高,空气间隙的绝缘强度降低。目前,间隙放电研究主要集中于低海拔区域,缺乏高海拔电气设备外绝缘设计的实验与理论支持。本文通过在55 m、2500 m和4300 m海拔下开展棒-板长间隙操作冲击放电实验,获取了不同海拔下的放电特性曲线。针对实验数据分布特点,提出基于最优传输的不变性风险最小化神经网络集成算法(OT-IRM),构建了适用于多海拔的击穿电压预测模型。模型在测试集上的平均误差为2.3%,表现出高精度与良好泛化能力。计算结果与现有海拔校正方法及其他机器学习模型对比,验证了其有效性。最后,利用该模型获得了不同海拔典型气象条件下的50%击穿电压,所提方法可适应广泛气候变化,为高海拔电网建设提供了重要参考。

English Abstract

With increasing altitude, the insulation strength of air gap decreases. Currently, research on gap discharge is primarily concentrated in low-altitude regions, lacking experimental and theoretical support for external insulation design of electrical equipment at high altitudes. To investigate the long-gap discharge characteristics at high altitudes, this study conducted experiments to obtain the switching impulse discharge characteristic curves of rod-plane gap at altitudes of 55 m, 2500 m, and 4300 m. In response to the distribution characteristics of the experimental data, we propose an invariant risk minimization neural network ensemble algorithm based on optimal transport. Based on experimental data, a breakdown voltage prediction model applicable to different altitudes was established. The model achieved an average error of 2.3% on the test set, validating its high accuracy and generalization. Additionally, the computational results of the proposed model were compared with existing altitude correction methods and other machine learning models, further validating its effectiveness. Finally, the model was utilized to obtain 50% breakdown voltage under typical meteorological conditions at different altitudes. The altitude correction method proposed in this paper can accommodate a wide range of climatic variations, thus providing valuable reference for the construction of high-altitude power grids.
S

SunView 深度解读

该高海拔绝缘击穿电压预测技术对阳光电源高原地区产品部署具有重要价值。针对PowerTitan储能系统和SG系列光伏逆变器在西藏、青海等高海拔电网的应用,OT-IRM算法可优化设备外绝缘设计,指导母线间隙、开关柜空气绝缘距离的海拔校正系数制定。该方法结合气象条件的泛化能力,可应用于ST系列储能变流器的高压侧绝缘配置优化,降低2500-4300m海拔下的绝缘裕度冗余设计成本。同时,机器学习建模思路可迁移至iSolarCloud平台,建立基于环境参数的绝缘状态预测性维护模型,提升高原光储电站的运行可靠性与安全裕度评估精度。