← 返回
功率流的几何结构与近似
Power Flow Geometry and Approximation
| 作者 | Ariel Goodwin · Jonathan Maack · Devon Sigler |
| 期刊 | IEEE Transactions on Power Systems |
| 出版日期 | 2025年9月 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 SiC器件 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 潮流方程 交流最优潮流问题 微分几何 潮流流形 计算方法 |
语言:
中文摘要
交流功率流方程在诸多涉及交流电物理特性的电力系统问题中具有重要意义,其中最典型的是交流最优潮流问题(ACOPF)。由于其非线性特性,包含功率流方程的优化问题通常难以求解。值得注意的是,功率流方程的解集构成一个光滑流形,可借助微分几何工具进行描述与分析。本文基于微分几何理论,研究该流形的几何与拓扑性质,强调其作为函数图像表示的便利性,并发展了相应的计算方法,包括回缩映射、线性近似的误差界以及黎曼度量、测地线和曲率张量等几何对象的计算公式。标量曲率与第二基本形式被用于量化线性近似(如直流近似)的精度。所有函数均以Julia实现并开源。
English Abstract
The power flow equations are important in numerous power systems problems of practical interest which consider alternating current power flow (ACPF) physics. Perhaps the most well studied being the alternating current optimal power flow problem (ACOPF), seeking to optimize the operation of an electric power system. Due to their non-linearity, problems which include the power flow equations are typically challenging, particularly in optimization. Interestingly, the set of solutions to the power flow equations forms a smooth manifold. As a result, differential geometry can be used to describe and analyze this set of equations. This approach has proven effective in several engineering applications (e.g., solving ACOPF and analyzing the solution space boundary). Central to the success of this approach is an understanding of the power flow manifold's geometry. In this work, we develop the geometric and topological properties of this manifold using concepts from differential geometry. After demonstrating the convenience of this manifold's representation as a function's graph, computational methods are emphasized: we develop retractions, error bounds for linear approximation, and formulas for evaluating the Riemannian metric (including associated objects such as geodesics and the curvature tensor). Scalar curvature and the second fundamental form play a new role in quantifying the quality of linear approximations, like the popular direct current approximation. All functions are implemented in Julia and available in an online repository. Proofs are included for completeness.
S
SunView 深度解读
该功率流几何分析技术对阳光电源储能与光伏系统优化具有重要价值。在PowerTitan大型储能系统中,可应用微分几何方法精确建模交流功率流特性,提升ESS集成方案中多变流器并联运行的潮流计算精度。对于ST系列储能变流器的构网型GFM控制,基于黎曼度量和测地线的非线性功率流分析能优化虚拟同步机VSG参数整定,提高弱电网适应性。标量曲率量化的线性近似误差界可指导SG系列光伏逆变器MPPT算法在复杂电网拓扑下的快速收敛策略。该几何计算框架为iSolarCloud平台的智能诊断提供理论支撑,可实现大规模新能源接入场景下的预测性潮流分析与优化控制。