← 返回
储能系统技术 储能系统 SiC器件 深度学习 ★ 5.0

电力系统暂态稳定评估中神经网络的鲁棒性认证

Robustness Certification of Neural Networks for Power System Transient Stability Assessment

作者 Liangyuchen Lu · Yanzhen Zhou · Hongtai Zeng · Zhengcheng Wang · Hongbin Sun · Qinglai Guo
期刊 IEEE Transactions on Power Systems
出版日期 2025年5月
技术分类 储能系统技术
技术标签 储能系统 SiC器件 深度学习
相关度评分 ★★★★★ 5.0 / 5.0
关键词 神经网络 鲁棒性认证 暂态稳定评估 鲁棒率指标 对抗训练
语言:

中文摘要

神经网络(NNs)可快速准确地评估电力系统安全性,但对输入微小扰动的鲁棒性有限,可能导致误判。现有鲁棒性认证方法在暂态稳定评估中面临物理约束与敏感动态的挑战。为此,本文提出考虑物理可行性的鲁棒性比率指标及两阶段认证框架,通过嵌入系统物理约束推导非平凡鲁棒下界,并利用优化样本的稳定性验证获取上界。基于该框架开展模型选择与对抗训练,提升模型鲁棒性。在新英格兰10机系统及实际区域电网中的验证表明所提方法有效。

English Abstract

Neural networks (NNs) can assess power system security rapidly and accurately, but they have limited robustness against small input perturbations that can lead to inaccurate predictions. Robustness certification can evaluate NNs' performance under perturbations, ensuring their credibility in practical applications. However, in transient stability assessment (TSA), the input data of NNs must comply with physical constraints rather than being subject to arbitrary perturbations. Additionally, even small input changes can affect transient stability. These two characteristics can cause inaccurate certification outcomes and make it challenging to directly apply traditional robustness certification methods in TSA. To address this, this paper introduces a robustness rate index considering physical feasibility and proposes a two-stage certification framework, where physical constraints of power systems are embedded to derive non-trivial robustness lower bounds while upper bounds are obtained by confirming the transient stability of optimized samples. Furthermore, the study explores model selection and adversarial training based on robustness certification. NNs are compared by robustness certification rate to select the most robust model among those with similar validation accuracy. Adversarial examples from certification are used to improve NNs' robustness. The proposed methods are validated on the New-England 10-machine system and a real-world regional system, demonstrating their effectiveness.
S

SunView 深度解读

该神经网络鲁棒性认证技术对阳光电源PowerTitan大型储能系统及构网型控制产品具有重要应用价值。在储能系统参与电网暂态稳定支撑时,需快速准确评估系统安全裕度,但传统神经网络模型易受扰动影响导致误判。该研究提出的物理约束嵌入式认证框架可应用于:1)ST系列储能变流器的GFM控制策略优化,通过鲁棒性认证确保暂态响应决策可靠性;2)iSolarCloud平台的智能诊断模块,提升电网扰动预测准确性;3)新能源场站并网稳定性评估系统,结合对抗训练增强模型在复杂工况下的泛化能力。该技术可显著提升阳光电源储能产品在电网安全支撑场景中的智能决策可信度。