← 返回
面向物理的神经网络用于在线动态安全评估
Physics-following Neural Network for Online Dynamic Security Assessment
| 作者 | Chao Shen · Ke Zuo · Mingyang Sun |
| 期刊 | IEEE Transactions on Power Systems |
| 出版日期 | 2025年4月 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 SiC器件 深度学习 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 动态安全评估 物理信息神经网络 物理跟随神经网络 双阶段训练策略 电力系统 |
语言:
中文摘要
数据驱动的动态安全评估(DSA)已成为应对可再生能源与电力电子设备快速接入带来安全挑战的有力工具。近期,融合微分方程描述物理规律的物理信息神经网络(PINN)被引入DSA,但仍面临代数偏差、收敛错误及训练非凸性等难题。为此,本文提出一种新型面向物理的神经网络(PFNN),通过估计故障后状态响应实现DSA。设计双阶段训练策略:第一阶段采用监督参数空间缩减以提升可优化性;第二阶段引入动力学引导的局部学习,结合经验损失与源自动态模型的物理正则项,解决代数偏差并确保正确收敛。在WSCC 3机9节点、新英格兰10机39节点及IEEE 16机68节点系统上的案例研究验证了方法的有效性。
English Abstract
Data-driven dynamic security assessment (DSA) has emerged as a promising tool for addressing system security challenges posed by the rapid integration of renewable energy resources and power electronic devices. In recent literature, a new concept of physics-informed neural network (PINN), which considers physics described by differential equations, has been deployed for DSA with several benefits. However, existing PINN-based DSA methods face challenges in accurately following dynamic power system physical models due to limitations of algebraic discrepancy, incorrect convergence, and non-convex difficulty during training. To this end, this paper proposes a novel physics-following neural network (PFNN) for DSA by estimating the post-contingency state responses. In particular, a dual-phase training strategy is designed to overcome these specific challenges: (1) a supervised parameter space reduction phase aimed at mitigating non-convex difficulties by initializing the model with empirical loss to enhance optimizability; and (2) a dynamics-guided local learning phase developed to resolve algebraic discrepancies and ensure correct convergence by integrating empirical loss with a physical regularization term derived from dynamic physics models and time-varying algebraic variables. The efficacy of the proposed PFNN is validated through comprehensive case studies conducted on the WSCC 3-machine 9-bus, the New England 10-machine 39-bus, and the IEEE 16-machine 68-bus systems, respectively.
S
SunView 深度解读
该物理引导神经网络技术对阳光电源储能与新能源并网产品具有重要应用价值。在PowerTitan大型储能系统中,可实现故障后动态响应的快速预测与安全评估,提升电网支撑能力;结合ST系列储能变流器的构网型GFM控制,通过动力学模型正则化训练,可优化虚拟同步机参数整定,增强暂态稳定性。在SG系列光伏逆变器的1500V高压系统中,该方法可用于故障穿越策略优化,通过双阶段训练策略快速评估不同运行工况下的安全裕度。技术核心的物理-数据融合思路可迁移至iSolarCloud平台,实现大规模新能源场站的在线安全监测与预测性维护,显著提升系统可靠性与智能化水平。