← 返回
电动汽车的备用容量提供:聚合边界与随机模型预测控制
Reserve Provision From Electric Vehicles: Aggregate Boundaries and Stochastic Model Predictive Control
| 作者 | Jacob Thrän · Jakub Mareček · Robert N. Shorten · Timothy C. Green |
| 期刊 | IEEE Transactions on Power Systems |
| 出版日期 | 2025年2月 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 模型预测控制MPC |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 电动汽车 可控充电 服务量预测 随机模型预测控制 车队规模 |
语言:
中文摘要
电动汽车(EV)的可控充电是提升可再生能源消纳、降低固定储能需求的重要灵活性资源。为应对个体驾驶与充电行为的不确定性,本文提出将多辆电动汽车电池视为一个具有聚合功率与能量边界的虚拟电池,从而预测可提供的系统备用容量。基于1000辆电动汽车数据的线性回归模型验证了边界的可预测性,归一化均方根误差为20%–40%。采用包含条件风险价值的两阶段随机模型预测控制算法,实现日前 reserve 调度。英国120万条家用充电记录的案例表明,车队规模扩大可提升预测精度,增加备用收益并降低运营成本;当规模达400辆以上时,成本较无控充电降低60%,单车平均提供1.8 kW备用容量。
English Abstract
Controlled charging of electric vehicles, EVs, is a major potential source of flexibility to facilitate the integration of variable renewable energy and reduce the need for stationary energy storage. To offer system services from EVs, fleet aggregators must address the uncertainty of individual driving and charging behaviour. This paper introduces a means of forecasting the service volume available from EVs by considering several EV batteries as one conceptual battery with aggregate power and energy boundaries. Aggregation avoids the difficult prediction of individual driving behaviour. The predictability of the boundaries is demonstrated using a multiple linear regression model which achieves a normalised root mean square error of 20%–40% for a fleet of 1,000 EVs. A two-stage stochastic model predictive control algorithm is used to schedule reserve services on a day-ahead basis addressing risk trade-offs by including Conditional Value-at-Risk in the objective function. A case study with 1.2 million domestic EV charge records from Great Britain illustrates that increasing fleet size improves prediction accuracy, thereby increasing reserve revenues and decreasing an aggregator's operational costs. For fleet sizes of 400 or above, cost reductions plateau at 60% compared to uncontrolled charging, with an average of 1.8 kW of reserve provided per vehicle.
S
SunView 深度解读
该电动汽车聚合备用容量技术对阳光电源充电桩产品线及储能系统具有重要应用价值。研究提出的虚拟电池聚合边界模型可直接应用于阳光电源V2G充电桩的群控策略,通过随机模型预测控制算法优化充电调度,使车队参与电网辅助服务。400辆以上规模可降低60%运营成本、单车提供1.8kW备用容量的数据,为阳光电源设计充电桩聚合器提供量化依据。该技术可与PowerTitan储能系统协同,将分散的EV资源整合为虚拟储能,提升iSolarCloud平台的能量管理能力,增强光储充一体化解决方案的灵活性与经济性,助力构建新型电力系统。