← 返回
基于典范多线性分解的无参数交流状态估计虚假数据注入攻击方法
Parameter-Free False Data Injection Attack Against AC State Estimation: A Canonical Polyadic Decomposition Based Approach
| 作者 | Haosen Yang · Wenjie Zhang · Zipeng Liang · Ziqiang Wang · C. Y. Chung · Qin Wang |
| 期刊 | IEEE Transactions on Power Systems |
| 出版日期 | 2024年9月 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 SiC器件 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 虚假数据注入攻击 交流状态估计 张量建模 不良数据检测 电力系统 |
语言:
中文摘要
随着现代电力系统向信息物理系统发展,虚假数据注入攻击(FDIA)等新型威胁日益突出。本文提出一种无需系统参数信息的AC状态估计FDIA新方法。通过将非线性AC模型表示为张量形式,并利用测量数据构建对角张量,采用典范多线性(CP)分解提取其横向列空间,实现隐蔽攻击。该方法未对AC模型做线性化简化,更贴合实际电网特性,易于规避坏数据检测。即使仅有部分传感器数据可用,方法仍具适应性。仿真验证了其有效性与优势。
English Abstract
With the evolving trend of modern power systems towards cyber-physical system (CPS), it is paramount to understand and investigate emerging threats, such as false data injection attacks (FDIAs). FDIA is capable of manipulating measurement data, thereby posing a serious risk to power systems. This paper proposes a new FDIA method against AC state estimation without the requirement on system parameters information. At first, the nonlinear AC state estimation model is formulated into a tensor form, where measuring variables are modelled as multiple tensor products between state variables and a third-order tensor characterising system information. Building upon this tensor-shaped modelling, measurement data is gathered into a diagonal tensor, following which tensor canonical polyadic (CP) decomposition is employed to factorize these data. The resultant lateral column space obtained by CP decomposition enables the stealth of the proposed FDIA method. In contrast to existing parameter-free FDIA methods in the literature, the proposed method makes no simplification for nonlinear AC model. Hence it is accurately consistent to the realistic power grid, and easier to bypass the bad data detection (BDD) of the target power grid. The proposed method is adaptive to the scenario that only data of partial sensors are available. Extensive simulation cases using synthetic data in numerous testing systems and comparisons with other parameter-free methods demonstrate the effectiveness and advantages of the proposed approach.
S
SunView 深度解读
该无参数FDIA攻击研究对阳光电源储能及光伏系统的信息安全防护具有重要警示价值。针对ST系列储能变流器和PowerTitan大型储能系统,该研究揭示的基于张量分解的隐蔽攻击手段,提示需在iSolarCloud云平台的状态估计模块中强化坏数据检测算法,特别是针对AC模型非线性特性的防护。建议在构网型GFM控制和跟网型GFL控制的测量数据链路中增加张量空间异常检测机制,提升分布式光伏及储能电站的抗网络攻击能力。该研究为阳光电源智能运维系统的安全架构设计提供了重要参考,有助于构建更鲁棒的新能源电力信息物理系统防护体系。