← 返回
基于灾害抗性的配电网飓风期间时空风险分析
Hazard Resistance-Based Spatiotemporal Risk Analysis for Distribution Network Outages During Hurricanes
| 作者 | Luo Xu · Ning Lin · Dazhi Xi · Kairui Feng · H. Vincent Poor |
| 期刊 | IEEE Transactions on Power Systems |
| 出版日期 | 2024年9月 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 SiC器件 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 极端天气 停电时空风险分析 序贯蒙特卡罗法 抗灾性时空风险分析方法 电力系统韧性 |
语言:
中文摘要
近年来,极端天气事件导致的停电频发,精准评估电力系统最脆弱环节——配电网的时空停运风险对提升系统韧性至关重要。序列蒙特卡洛(SMC)方法虽广泛用于极端天气下的时空风险分析,但其在时序模拟中重复采样时不变脆弱性函数,易高估高频采样下演变灾害的损毁程度。为此,本文提出一种基于灾害抗性的时空风险分析方法(HRSRA),将元件失效概率转换为时不变的灾害抗性进行建模。该方法可自适应融合高时空分辨率气象模型,结合电力系统地理信息与物理风场模型,利用波多黎各真实时序停电数据(含2022年菲奥娜飓风)验证了其优越性。
English Abstract
In recent decades, blackouts have shown an increasing prevalence of power outages due to extreme weather events such as hurricanes. Precisely assessing the spatiotemporal outages in distribution networks, the most vulnerable part of power systems, is critical to enhancing power system resilience. The Sequential Monte Carlo (SMC) simulation method is widely used for spatiotemporal risk analysis of power systems during extreme weather hazards. However, it is found here that the SMC method can lead to large errors as it repeatedly samples the failure probability from the time-invariant fragility functions of system components in time-series analysis, particularly overestimating damages under evolving hazards with high-frequency sampling. To address this issue, a novel hazard resistance-based spatiotemporal risk analysis (HRSRA) method is proposed. This method converts the failure probability of a component into a hazard resistance and uses it as a time-invariant value in time-series analysis. The proposed HRSRA provides an adaptive framework for incorporating high-spatiotemporal-resolution meteorology models into power outage simulations. By leveraging the geographic information system data of the power system and a physics-based hurricane wind field model, the superiority of the proposed method is validated using real-world time-series power outage data from Puerto Rico, including data collected during Hurricane Fiona in 2022.
S
SunView 深度解读
该飓风期间配电网时空风险分析技术对阳光电源PowerTitan大型储能系统和ST系列储能变流器的韧性设计具有重要价值。基于灾害抗性的HRSRA方法可精准识别极端天气下配电网脆弱节点,为储能系统的选址部署、容量配置提供决策依据。结合iSolarCloud云平台的气象数据融合能力,可实现储能系统在飓风等极端天气前的预防性充电、孤岛运行预案优化,提升关键负荷供电韧性。该时空风险评估框架还可应用于光储充一体化微网的应急响应策略,通过SG逆变器与储能系统的协同控制,在配电网故障时快速切换至构网型GFM模式,保障区域供电连续性,显著提升新能源系统抗灾能力。