← 返回
基于物理信息的图学习方法以实现配电系统最优切换问题求解
Physics-Informed Graph-Based Learning to Enable Solving Optimal Distribution Switching Problem
| 作者 | Reza Bayani · Saeed Manshadi |
| 期刊 | IEEE Transactions on Power Systems |
| 出版日期 | 2024年9月 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 SiC器件 深度学习 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 图卷积神经网络 配电网最优开关问题 混合整数二阶锥规划 学习算法 可行性 |
语言:
中文摘要
本文提出了一种新颖的图卷积神经网络(GCN)架构,用于求解配电网络中的最优切换问题,并在学习过程中融合了底层的潮流方程。该切换问题被建模为混合整数二阶锥规划(MISOCP),因其计算复杂性而在实际应用中难以求解。与现有研究不同,所提出的算法在训练及推理阶段均引入描述物理系统约束的数学模型信息,确保决策结果的可行性。研究结果表明,利用线性化模型的预测结果指导MISOCP求解具有显著潜力。
English Abstract
This letter introduces a novel graph convolutional neural network (GCN) architecture for solving the optimal switching problem in distribution networks while integrating the underlying power flow equations in the learning process. The switching problem is formulated as a mixed-integer second-order cone program (MISOCP), recognized for its computational intensity making it impossible to solve in many real-world cases. Transforming the existing literature, the proposed learning algorithm is augmented with mathematical model information representing physical system constraints both during and post training stages to ensure the feasibility of the rendered decisions. The findings highlight the significant potential of applying predictions from a linearized model to the MISOCP form.
S
SunView 深度解读
该基于物理信息的图学习配电优化技术对阳光电源PowerTitan储能系统及iSolarCloud智能运维平台具有重要应用价值。在配电网侧储能场景中,该方法可实时求解含储能系统的最优网络拓扑切换策略,通过GCN快速预测可行开关动作方案,指导MISOCP精确求解,显著提升ST系列储能变流器参与配电网优化调度的响应速度。物理约束嵌入的深度学习架构确保潮流方程满足,可集成至iSolarCloud平台实现储能-配电网协同优化,支持含分布式光伏、储能的主动配电网拓扑重构与故障自愈。该技术为阳光电源开发智能配电优化算法、提升储能系统电网友好性提供了方法论支撑。