← 返回
光伏发电技术 储能系统 故障诊断 ★ 5.0

基于无线传感器网络的太阳能电站故障检测与定位:一种实验方法

Wireless Sensor Network-Based Fault Detection and Localization for Solar Stations: An Experimental Approach

作者 Raouf Zerrougui · Riad Khenfer · Yacine Boussaadia · Abderrahmane Benabbas · Okba Saidani · Abderrahim Yousfi
期刊 IEEE Journal of Photovoltaics
出版日期 2025年8月
技术分类 光伏发电技术
技术标签 储能系统 故障诊断
相关度评分 ★★★★★ 5.0 / 5.0
关键词 无线传感器网络 光伏性能 故障检测 自适应优化 功率输出
语言:

中文摘要

本文介绍了一种无线传感器网络(WSN)系统,该系统通过实时故障检测和自适应优化,在遮阴情况下提高光伏(PV)性能。该解决方案采用了五个经过精心布置的传感器以及基于Chipkit Max32的算法,该算法能够:1)通过动态电压 - 电流相关性以98.2%的准确率检测遮阴故障;2)利用阻抗映射以95.7%的精度定位故障;3)推荐旁路操作以限制功率损失。实验结果表明,与传统系统相比,该系统在遮阴情况下的功率输出提高了27.4%,响应时间为1.8秒(比学术领域的其他方案快60%),每个节点成本为23美元(比商用优化器便宜62%)。关键创新点包括混合串并联分类矩阵和自适应电流加权,这使误报率降低了41%。通过与七种最先进的方法进行对比分析验证,该系统在动态遮阴期间能保持最大功率点的94%以上。这项工作为经济高效的实时光伏监测树立了新标准,同时解决了无线传感器网络在传感器密度和遮阴响应方面的关键局限性。

English Abstract

This article introduces a wireless sensor network (WSN) system that enhances photovoltaic (PV) performance during shading through real-time fault detection and adaptive optimisation. The solution employs five strategically placed sensors and a Chipkit Max32-based algorithm that: 1) detects shading faults with 98.2% accuracy via dynamic voltage-current correlation, 2) localises faults at 95.7% precision using impedance mapping, and 3) recommends bypass actions to limit power loss. Experimental results demonstrate a 27.4% improvement in power output under shading versus conventional systems, with 1.8-s response times (60% faster than academic alternatives) at $23/node (62% cheaper than commercial optimisers). Key innovations include a hybrid series-parallel classification matrix and adaptive current weighting, which reduces false alarms by 41%. The system maintains more than 94% of the maximum power point during dynamic shading, as validated through comparative analysis with seven state-of-the-art methods. This work establishes a new standard for cost-effective, real-time PV monitoring while resolving critical WSN limitations in sensor density and shading response.
S

SunView 深度解读

该无线传感器网络故障检测技术对阳光电源iSolarCloud智能运维平台具有重要应用价值。研究提出的分布式传感器节点架构可直接集成到SG系列光伏逆变器的组串级监测系统中,结合改进的故障识别算法,可显著提升阴影遮挡、热斑、组件失配等典型故障的检测灵敏度与定位精度。该方案对PowerTitan大型储能电站的电池簇级故障诊断同样适用,通过实时监测与自适应控制策略,可优化MPPT算法在复杂光照条件下的追踪效率。实验验证的快速定位能力为预测性维护功能提供技术支撑,可缩短故障响应时间,降低运维成本,提升电站整体可靠性与发电效率。