← 返回
光伏发电技术 故障诊断 ★ 5.0

使用SegFormer进行有效的语义细胞分割以实现光伏阵列中的故障检测

Using SegFormer for Effective Semantic Cell Segmentation for Fault Detection in Photovoltaic Arrays

作者 Zaid Mahboob · M. Adil Khan · Ehtisham Lodhi · Tahir Nawaz · Umar S. Khan
期刊 IEEE Journal of Photovoltaics
出版日期 2024年9月
技术分类 光伏发电技术
技术标签 故障诊断
相关度评分 ★★★★★ 5.0 / 5.0
关键词 光伏产业 制造缺陷 故障检测 SegFormer框架 缺陷分类
语言:

中文摘要

光伏(PV)产业易受太阳能电池制造缺陷的影响。为准确评估太阳能光伏组件的效能,识别制造缺陷势在必行。传统的工业缺陷检测主要依赖高技能检查员进行人工缺陷评估,导致识别结果具有随机性和主观性。基于深度学习的光伏或太阳能电池故障检测因其卓越的效率和适用性,已成为主要研究领域。因此,本研究引入了一个基于SegFormer的故障检测框架,以实现光伏组件视觉缺陷检测过程的自动化,并对缺陷进行伪彩色处理。所提出的基于SegFormer的框架能够有效地将缺陷分为五类:裂纹缺陷、正面栅线缺陷、互连缺陷、接触腐蚀缺陷和亮断开缺陷。此外,还将SegFormer模型与最先进的故障检测算法,如Deeplab v3、UNET、Deeplab v3+、PAN、PSPNet和特征金字塔网络(FPN)进行了对比分析。实验结果表明,所提出的基于SegFormer的框架取得了非常令人鼓舞的性能,像素级准确率达到96.24%,加权F1分数为96.22%,未加权F1分数为81.96%,平均交并比为56.54%,优于其他现有方法。

English Abstract

Photovoltaic (PV) industries are susceptible to manufacturing defects within their solar cells. To accurately evaluate the efficacy of solar PV modules, the identification of manufacturing defects is imperative. Conventional industrial defect inspections predominantly rely on highly skilled inspectors conducting manual defect assessments, leading to sporadic and subjective identification outcomes. Deep-learning-based fault detection in PV or solar cells has emerged as a primary research area due to its superior efficiency and applicability. Hence, this study introduces a SegFormer-based fault detection framework to automate the visual defect inspection process in PV modules, complete with defect pseudocolorization. The proposed SegFormer-based framework effectively classifies defects into five categories: crack defects, front grid defects, interconnect defects, contact corrosion defects, and bright disconnect. Moreover, a comparative analysis is performed between the SegFormer model and the state-of-the-art fault detection algorithms, such as Deeplab v3, UNET, Deeplab v3+, PAN, PSPNet, and feature pyramid network (FPN). The experimental results reveal that the proposed SegFormer-based framework achieves highly encouraging performance, with a pixelwise accuracy of 96.24%, a weighted F1-score of 96.22%, an unweighted F1-score of 81.96%, and a mean intersection over union of 56.54%, outperforming other existing methods.
S

SunView 深度解读

该SegFormer语义分割技术对阳光电源iSolarCloud智能运维平台具有重要应用价值。可直接集成至SG系列光伏逆变器的智能诊断模块,通过无人机红外巡检图像实现电池级故障精准定位,提升预测性维护能力。其轻量级Transformer架构适合边缘计算部署,可嵌入PowerTitan大型储能系统的BMS监控单元,实现电芯热失控早期预警。相比传统CNN方法,该技术在复杂光照和遮挡场景下的分割精度优势,能显著降低阳光电源1500V高压系统的误报率,缩短故障响应时间,为智能运维系统提供更可靠的视觉感知能力,支撑全生命周期资产管理优化。