← 返回
储能系统技术 储能系统 SiC器件 ★ 5.0

一种基于改进直流解的物理信息图卷积网络用于交流最优潮流

A Physics-Informed Graph Convolution Network for AC Optimal Power Flow Via Refining DC Solution

作者 Yundi Liu · Yuanzheng Li · Shangyang He · Yang Li · Yong Zhao · Zhigang Zeng
期刊 IEEE Transactions on Power Systems
出版日期 2025年7月
技术分类 储能系统技术
技术标签 储能系统 SiC器件
相关度评分 ★★★★★ 5.0 / 5.0
关键词 交流最优潮流 直流最优潮流 数据驱动方法 PrOPF框架 预测精度
语言:

中文摘要

求解大规模电力系统的交流最优潮流(AC - OPF)问题对于整合可再生能源的电力系统运行至关重要。然而,随着系统规模的增大,传统的交流最优潮流数值方法面临计算成本高和收敛困难等挑战。为应对这些挑战,现有研究采用直流最优潮流(DC - OPF)或数据驱动方法。直流最优潮流通过考虑电力系统的固有物理特性(如电压变化)对交流最优潮流问题进行线性化处理,从而提供近似解。同时,数据驱动方法利用其强大的端到端学习能力有效求解交流最优潮流。尽管这两种方法速度都足够快,但直流最优潮流由于其简化假设(忽略了无功功率和电压偏差)可能存在精度限制。另一方面,数据驱动方法在有限数据上进行训练时可能会出现性能下降,并且容易违反约束条件。为解决这些问题,本研究提出了PrOPF,这是一个结合物理信息的框架,通过优化直流解来求解交流最优潮流。PrOPF并非从头开始学习,而是将直流最优潮流的结果作为物理先验知识,利用图神经网络学习从直流解到交流解的映射。在训练过程中引入了带有软约束的物理信息损失函数,并在推理过程中施加硬约束以提高物理一致性。在各种含可再生能源的IEEE测试系统上进行了大量仿真。结果表明,与其他数据驱动的最优潮流方法相比,我们提出的PrOPF实现了更高的预测精度和更低的约束违反率,并且比传统内点法快达30倍。

English Abstract

Solving alternating current optimal power flow (AC-OPF) problems for large-scale power systems is essential for operations integrating renewable energy. However, conventional numerical methods for AC-OPF face challenges such as high computational costs and convergence difficulties as system size increases. To address these challenges, existing research utilizes direct current OPF (DC-OPF) or data-driven methods. DC-OPF linearizes the AC-OPF problem by considering inherent physical characteristics of the power system, such as voltage variations, providing an approximate solution. Meanwhile, data-driven methods leverage its strong end-to-end learning capabilities to solve AC-OPF effectively. Although both methods are sufficiently fast, DC-OPF can suffer from accuracy limitations due to its simplifying assumptions, which neglect reactive power and voltage deviations. On the other hand, data-driven approaches may exhibit degraded performance when trained on limited data and are prone to constraint violations. To address these problems, this study proposes PrOPF, a physics-informed framework that refines DC solutions to solve AC-OPF. Instead of learning from scratch, PrOPF treats DC-OPF results as physical priors and learns the mapping from DC to AC solutions using a graph neural network. A physics-informed loss with soft constraints is introduced during training, and hard constraints are enforced during inference to improve physical consistency. Extensive simulations are conducted on various IEEE test systems with renewable energy. The results demonstrate that our PrOPF achieves higher prediction accuracy and lower constraint violations compared to other data-driven OPF methods, and attains up to 30x acceleration over the traditional interior point method.
S

SunView 深度解读

该物理信息图卷积网络技术对阳光电源PowerTitan大型储能系统及ST系列储能变流器的能量管理系统具有重要应用价值。通过快速求解AC-OPF问题,可显著提升储能系统在电网侧的实时调度响应速度,优化多台储能变流器并联运行时的功率分配策略。该方法融合物理约束的特性与阳光电源构网型GFM控制技术高度契合,可用于iSolarCloud云平台的智能调度模块,实现光储一体化电站的经济优化运行。特别是在含高比例可再生能源的微电网场景中,该技术可替代传统迭代算法,将潮流计算时间从分钟级降至秒级,满足储能系统毫秒级功率响应需求,提升系统稳定性与经济效益。