← 返回
储能系统技术 储能系统 SiC器件 ★ 5.0

高分辨率实时电力系统状态估计:一种融合物理嵌入与数据驱动的视角

High-Resolution Real-Time Power Systems State Estimation: A Combined Physics-Embedded and Data-Driven Perspective

作者 Jianxiong Hu · Qi Wang · Yujian Ye · Yi Tang
期刊 IEEE Transactions on Power Systems
出版日期 2024年8月
技术分类 储能系统技术
技术标签 储能系统 SiC器件
相关度评分 ★★★★★ 5.0 / 5.0
关键词 电力系统状态估计 物理嵌入数据驱动框架 多头图注意力网络 残差网络 训练方法
语言:

中文摘要

对电力系统运行状态进行高分辨率实时感知,对于实现在线动态安全评估至关重要。然而,冗余测量有限、动态模型复杂以及平衡状态变量和非状态变量精度等相关挑战,阻碍了传统的模型驱动和数据驱动状态估计(SE)方法提供具有高时空精度的实时状态。本文提出了一种新颖的物理嵌入数据驱动状态估计框架。该框架通过将物理知识融入状态估计模型的开发和训练过程,系统地完善了以往的高分辨率数据驱动状态估计框架。利用物理模型将混合测量值转换为节点特征并提供系统近期状态,采用多头图注意力网络提取空间特征,并通过残差网络修正当前状态与近期状态之间的差异。为提高状态变量和非状态变量的精度,采用一种新颖的物理嵌入训练方法对状态估计模型进行训练。该方法自适应地调整损失函数中状态变量和非状态变量的权重,最终提高其估计精度。案例研究验证了该框架在IEEE 39节点和118节点测试系统上的准确性、效率、可扩展性和鲁棒性方面的卓越性能。此外,本文从理论上证明了该框架相较于传统数据驱动方法的优势。

English Abstract

Real-time perception of the power system operating state with high resolution is essential for enabling online dynamic security assessment. However, challenges associated with limited redundant measurements, dynamic model complexity and balancing state and non-state variables' accuracy hinder conventional model-driven and data-driven state estimation (SE) methods from delivering real-time states with high temporal-spatial precision. This paper proposes a novel physics-embedded and data-driven SE framework. By incorporating physics knowledge into both SE model development and training, this framework systematically bolsters previous high-resolution data-driven SE framework. By utilizing the physics model to translate hybrid measurements into node features and provide recent system state, the multi-head graph attention network is employed to extract spatial features, correcting discrepancies between the current and recent states through a Residual Network. To enhance accuracy of both state and non-state variables, the SE model undergoes training by a novel physics-embedded training method. This approach adaptively adjusts the weighting of state and non-state variables in the loss function, ultimately enhancing their estimation accuracy. Case studies verify its superior performance in terms of accuracy, efficiency, scalability and robustness on the IEEE 39-bus and 118-bus test systems. Furthermore, its advantages compared to traditional data-driven methods are proved theoretically in this paper.
S

SunView 深度解读

该物理嵌入与数据驱动融合的高分辨率状态估计技术对阳光电源储能系统具有重要应用价值。在PowerTitan大型储能系统中,可实现电池簇级实时状态监测与动态安全评估,提升ST系列储能变流器的并网稳定性。该方法结合电力系统微分代数方程与深度学习,可优化构网型GFM控制策略的实时响应能力,增强iSolarCloud平台的智能诊断精度。对于光储一体化场景,高分辨率状态感知能提升SG逆变器与储能系统的协同控制性能,实现毫秒级故障预警与预测性维护,显著提高系统可靠性与经济性。