← 返回
基于物理感知回归的径向馈线拓扑重构下分布式能源调度
Physics-Aware Regression for DER Dispatch With Topological Reconfigurations of Radial Feeder
| 作者 | Rahul Chakraborty · Md Salman Nazir · Aranya Chakrabortty |
| 期刊 | IEEE Transactions on Industry Applications |
| 出版日期 | 2024年9月 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 SiC器件 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 分布式能源资源 功率调度 多阶段回归算法 拓扑重构 预测精度 |
语言:
中文摘要
本文提出一种基于物理感知多阶段回归(MSR)的算法,用于预测分布式能源资源(DER)的功率调度,以便在具有不同拓扑重构的智能配电系统中提供辅助支持。通过智能选择输入数据训练集解决回归共线性问题,这也显著降低了对电压和电流测量的要求。应用基于逻辑回归的标记方法将数据分类为不相交的训练集,从而显著提高预测精度。此外,通过考虑可切换支路并检测拓扑相似性,将物理感知学习与回归相结合,以实现不同拓扑重构下的预测。本文给出了33节点、含3个DER的馈线和123节点、含5个DER的馈线的仿真结果,以证明所提算法在一系列运行条件下以及考虑参数值不确定性时,在电压支持应用方面的准确性、可扩展性和计算效率上的优越性能。所提出的方法和研究成果可扩展应用于一系列网络潮流问题和基于DER的应用。
English Abstract
In this paper, we propose a physics-aware multi-stage regression (MSR) based algorithm to predict the power dispatches of distributed energy resources (DERs) for providing ancillary support in a smart distribution system with different topological reconfigurations. Regression collinearity is addressed with intelligent choice of the input data training set which also considerably reduces the requirements on the voltage and current measurements. Logistic regression based labeling is applied to classify the data into disjoint training sets which significantly improves the prediction accuracy. In addition, physics-aware learning is embedded with regression for predictions in different topological reconfigurations by considering switchable branches and detecting topological similarities. Simulations from 33-node 3-DER feeder and 123-node 5-DER feeder are provided to demonstrate the superior performance of the proposed algorithm in terms of accuracy, scalability and computational efficiency for voltage support application under a range of operating conditions and considering uncertainty in parameter values. The proposed approach and learnings can be extended to a range of network power flow problems and DER-based applications.
S
SunView 深度解读
该物理感知DER调度技术对阳光电源PowerTitan储能系统与ST系列储能变流器具有重要应用价值。文中提出的拓扑重构自适应算法可直接应用于配电网侧储能系统的智能调度模块,结合iSolarCloud云平台实现多储能站点协同优化。物理约束融合的数据驱动方法可增强SG光伏逆变器与储能系统的联合调度精度,在保证电压安全与辐射状约束前提下提升系统经济性。该多阶段回归框架为阳光电源开发新一代能量管理系统(EMS)提供算法基础,特别适用于含开关重构的工业园区微网场景,可显著提升调度实时性与泛化能力,降低优化求解计算负担。