← 返回
储能系统技术 储能系统 SiC器件 ★ 5.0

可解释的物理深度学习模型用于架空输电线路覆冰厚度预测

Explainable Physical Deep-Learning Model for Overhead Transmission Line Icing-Thickness Prediction

作者 Hui Hou · Yi Wan · Zhenguo Wang · Shaohua Wang · Zhengmao Li · Xiaolu Bai
期刊 IEEE Transactions on Industry Applications
出版日期 2025年7月
技术分类 储能系统技术
技术标签 储能系统 SiC器件
相关度评分 ★★★★★ 5.0 / 5.0
关键词 全球变暖 输电线路覆冰厚度预测 可解释物理深度学习模型 白鲸优化算法 准确性与可解释性平衡
语言:

中文摘要

全球变暖导致极端天气事件频发,其中频繁发生的冰灾对电力系统的稳定性构成了重大威胁。随着预测模型复杂度的增加,必须同时确保其准确性和可解释性。因此,我们提出了一种用于架空输电线路覆冰厚度预测的可解释物理深度学习模型。首先,通过白鲸优化(BWO)方法构建了一个优化模型,该模型可使预测误差最小化。其次,将深度学习预测模型与物理模型和长短期记忆网络(LSTM)模型相结合。物理模型考虑了诸如风偏角、风荷载和冰荷载等物理定律。此外,我们使用沙普利加性解释法来阐释输入特征对输出特征及模型预测结果的影响。最后,利用2022年至2023年架空输电线路覆冰厚度的实际数据对该预测模型进行了验证。实验结果表明,所提出的模型能够有效平衡准确性和可解释性。

English Abstract

Global warming has resulted in frequent extreme-weather events, among which frequent ice disasters significantly threaten the stability of power systems. As the complexity of prediction models increases, their accuracy and explainability must be ensured simultaneously. Therefore, we propose an explainable physical deep-learning model for overhead transmission line icing-thickness prediction. First, an optimization model is developed via Beluga Whale Optimization (BWO) method, which minimizes the prediction error. Next, the deep-learning prediction model is combined with physical and the Long Short-Term Memory (LSTM) models. The physical model considers physical laws, such as the wind deflection angle, wind load, and ice load. Additionally, we use Shapley Additive explanations to explain the effect of the input features on the output features and model prediction. Finally, the prediction model is validated using actual overhead transmission line icing-thickness data from 2022 to 2023. Experimental results indicate that the proposed model can effectively balance accuracy and explainability.
S

SunView 深度解读

该覆冰预测技术对阳光电源户外电力设备具有重要防护价值。针对ST系列储能变流器和PowerTitan大型储能系统的户外部署场景,可通过集成气象传感器与物理深度学习模型,实现设备覆冰风险的提前预警,触发主动加热或功率调节策略。对于SG系列光伏逆变器,该可解释AI方法可借鉴至iSolarCloud智能运维平台,通过注意力机制识别影响设备性能的关键环境因子(温度、湿度、风速等),提升预测性维护的准确性。物理约束与深度学习融合的建模思路,可应用于功率器件热管理、电池热失控预警等场景,增强系统在极端气候下的可靠性与决策透明度。