← 返回
基于红外热成像图像和轻量级深度CNN的光伏组件故障诊断端到端原型
An End-to-End Prototype for Fault Diagnosis of Solar Photovoltaic Modules Using Infrared Thermographic Images and Lightweight Deep CNNs
| 作者 | A. Mellit · C. Moussaoui · S. Pastore · A. Massi Pavan |
| 期刊 | IEEE Transactions on Industry Applications |
| 出版日期 | 2025年7月 |
| 技术分类 | 光伏发电技术 |
| 技术标签 | 故障诊断 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 太阳能光伏 故障诊断 红外热成像 深度卷积神经网络 端到端原型 |
语言:
中文摘要
随着太阳能在各领域的广泛应用,为确保太阳能光伏(PV)装置的安全性和效率,已开发出有效且可靠的故障检测与诊断技术。近年来,利用红外热成像(IRT)图像对光伏电站进行故障诊断受到了研究人员的广泛关注。基于IRT图像设计一个有效且经济实惠的端到端原型,以协助光伏电站的操作人员和维护团队进行故障诊断,这极为必要,也是光伏界关注的关键问题。在本研究中,首先,我们将基于轻量级深度卷积神经网络(DCNN)的模型与五种混合模型进行比较,利用采集到的IRT图像对光伏组件的缺陷严重程度进行分类。结果表明,DCNN、DCNN - 支持向量机(SVM)和DCNN - 极端梯度提升(XGBoost)在分类准确率方面表现相近(均为87%),而其他混合分类器的准确率较低。随后,我们设计了一个集成红外相机和低成本边缘设备的端到端原型。进行了实验测试,以评估所开发的轻量级DCNN在实时应用中的有效性。为评估所开发模型的通用性,在不同气候条件下对该原型进行了验证。实验结果表明,该原型能够以较高的准确率对缺陷进行分类。所设计的原型是实验室规模研究与工业光伏故障诊断应用之间的关键桥梁,极大地协助了运维团队对光伏电站的故障进行有效诊断。
English Abstract
With the expansion of solar energy in various sectors, effective and reliable fault detection and diagnosis techniques have been developed to ensure the safety and efficiency of solar photovoltaic (PV) installations. Recently, the fault diagnosis of PV plants using infrared thermography (IRT) images has gained significant attention from researchers. Designing an effective and affordable end-to-end prototype to assist operators and maintenance teams in fault diagnosis of PV plants, based on IRT images is extremely needed and remains a key concern within the photovoltaic community. In this study, first we compare a lightweight deep convolutional neural network (DCNN)-based model with five hybrid models to classify the severity of defects in PV modules using captured IRT images. The results show that DCNN, DCNN-SVM, and DCNN-XGBoost provide similar results in terms of classification accuracy (87%), while the other hybrid classifiers offer lower accuracy. Subsequently, we designed an endto-end prototype incorporating an IR camera and a low-cost edge device. Experimental tests were conducted to evaluate the effectiveness of the developed lightweight DCNN in real-time applications. To assess the generalizability of the developed model, the prototype was verified under different climatic conditions. The experimental results demonstrated the prototype's ability to classify defects with good accuracy. The designed prototype serves as a key bridge between laboratory-scale research and industrial PV applications for fault diagnosis, greatly assisting operation and maintenance teams in effectively diagnosing faults in their PV power plants.
S
SunView 深度解读
从阳光电源的业务视角来看,这项基于红外热成像和轻量级深度学习的光伏故障诊断技术具有显著的战略价值。作为全球领先的光伏逆变器和储能系统供应商,阳光电源不仅提供硬件设备,更致力于构建全生命周期的智能运维解决方案,而该技术正好契合这一战略方向。
该研究的核心价值在于实现了从实验室到工业应用的关键跨越。通过将轻量级卷积神经网络部署在低成本边缘设备上,达到87%的故障分类准确率,这为大规模光伏电站的智能巡检提供了经济可行的技术路径。对于阳光电源而言,这项技术可直接整合到现有的iSolarCloud智慧能源管理平台中,与逆变器数据、气象数据等多维信息融合,形成更完整的电站健康诊断体系,显著提升运维效率并降低人工成本。
从技术成熟度评估,该方案已完成端到端原型验证,且在不同气候条件下展现出良好的泛化能力,具备较高的工程化可行性。然而,实际应用仍面临挑战:87%的准确率在工业场景中可能需要进一步提升;无人机巡检与固定摄像头的部署方案需要优化;不同组件类型、安装环境对模型鲁棒性的影响需要深入验证。
对阳光电源而言,这代表着将AI技术深度融入光伏运维的重要机遇。建议与研究团队合作,利用阳光电源全球数百GW装机容量的海量运维数据,进一步训练和优化模型,打造具有自主知识产权的智能诊断系统,强化公司在智慧能源管理领域的技术壁垒和服务竞争力。