← 返回
重离子辐照引起SiC功率MOSFET栅氧损伤的研究
Investigation on Gate-Oxide Damage of SiC Power MOSFETs Induced by Heavy Ion
| 作者 | Ziwen Chen · Yuxiao Yang · Ruize Sun · Yijun Shi · Chao Peng · Hong Zhang |
| 期刊 | IEEE Transactions on Electron Devices |
| 出版日期 | 2025年6月 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 SiC器件 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 碳化硅功率MOSFET 重离子辐照 栅氧化层损伤 损伤机制 临界电压 |
语言:
中文摘要
近期研究表明,碳化硅(SiC)功率MOSFET在重离子辐照后,在极低的漏极应力水平下就会出现故障,且结构损伤主要集中在氧化层。然而,其损伤机制尚未得到精确分析。本研究考察了器件在不同漏极偏置条件下的栅极损伤机制。在200 V漏极偏置下,1200 V SiC功率MOSFET的栅极结构未出现损伤。漏极偏置高于200 V时,器件的损伤位置集中在沟道区上方的氧化层。在以往的研究中,栅极电介质内皮秒级的瞬态电场被认为是氧化层损伤的主要原因;然而,仅这一机制无法解释本文所报道的现象。因此,本文通过计算重离子穿过栅极电介质在氧化层内感应出的电场以及重离子入射在半导体中产生的电场,对栅极氧化层的退化机制进行了研究。结果表明,在临界漏极电压以上,空穴注入氧化层会造成严重损伤。在临界电压以下,电子注入氧化层会导致陷阱增多。这些发现通过电荷泵(CP)测量得到了进一步验证。此外,我们证明了理论模型能够根据线性能量转移(LET)以及辐照实验中所用重离子的射程,预测栅极损伤开始出现的条件。
English Abstract
Recent studies have shown that silicon carbide (SiC) power MOSFETs experience failures at extremely low-drain stress levels following heavy-ion irradiation, with structural damage concentrated in the oxide layer. However, the damage mechanism has not been precisely analyzed. This study examined the gate damage mechanisms of devices under different drain bias conditions. The gate structure of a 1200-V SiC power MOSFET did not exhibit damage at a 200-V drain bias. Damage locations for devices under drain biases above 200 V were concentrated in the oxide layer above the channel region. In prior studies, the transient picosecond-scale electric field within the gate dielectric has been identified as the primary driver of oxide damage; however, this mechanism alone does not account for the observations reported herein. Therefore, the gate-oxide degradation mechanism is investigated herein by computing both the electric field induced within the oxide by heavy-ion traversal of the gate dielectric and the electric field generated in the semiconductor by heavy-ion incidence. The results show that, above the critical drain voltage, hole injection into the oxide layer causes severe damage. Below the critical voltage, electron injection into the oxide layer leads to increased traps. These findings were further validated through charge pumping (CP) measurements. In addition, we demonstrate that theoretical models can predict the conditions at which gate damage starts to appear as a function of linear energy transfer (LET) and the range of heavy ions used in the irradiation experiments.
S
SunView 深度解读
从阳光电源的业务视角来看,这项关于SiC功率MOSFET栅氧化层重离子损伤机制的研究具有重要的战略意义。SiC器件已成为我们新一代光伏逆变器和储能变流器的核心功率开关,其可靠性直接影响系统的长期稳定运行。
该研究揭示了一个关键发现:在200V以上漏极偏置条件下,重离子辐照会在沟道区域上方的氧化层造成集中损伤,且空穴注入是主要破坏机制。这对我们在高海拔、强辐射环境部署的光伏电站和储能项目具有直接警示意义。特别是在青藏高原、中东沙漠等宇宙射线通量较高的地区,我们的1500V高压光伏系统和大规模储能系统中使用的1200V及以上SiC器件可能面临长期可靠性风险。
从技术应用价值看,该研究提供的理论模型能够根据线性能量传递(LET)和重离子射程预测栅极损伤的临界条件,这为我们的产品设计提供了量化依据。我们可以据此优化器件选型标准,在栅氧化层厚度、工作电压裕量设计上做出更科学的决策,或者针对特殊应用场景开发具有抗辐照加固设计的定制化解决方案。
技术挑战在于,现有商用SiC器件的抗辐照性能数据尚不完善,且加固技术可能增加成本。但这也带来机遇:阳光电源可以联合上游供应链,推动建立SiC器件的辐照可靠性标准,甚至参与开发面向极端环境的专用器件。考虑到我们在全球新能源市场的布局,这项技术储备将成为差异化竞争优势,特别是在航天、军工级可靠性要求的特殊应用场景中开拓新的业务增长点。