← 返回
基于量子粒子群优化的网络物理电力系统鲁棒中继功率分配策略
Quantum Particle Swarm Optimization-Based Robust Relay Power Allocation Strategy for Cyber-Physical Power System
| 作者 | |
| 期刊 | IEEE Transactions on Industrial Informatics |
| 出版日期 | 2025年1月 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 SiC器件 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 无线通信 量子粒子群优化 中继功率优化分配 关键业务指令 电力系统 |
语言:
中文摘要
由于无线通信部署灵活且具有成本效益,其已在信息物理电力系统中得到广泛应用。为解决在通信资源有限和信道增益不确定的条件下,关键业务指令无法优先可靠传输的问题,本文提出一种基于量子粒子群优化(QPSO)的鲁棒中继功率优化分配策略。具体而言,首先设计了一种综合重要性评估方法,该方法将业务指令的预期传输速率作为服务质量(QoS)要求,将相应的功率调节量作为业务指令对物理电网的影响,以实现指令的细粒度优先级划分。随后,基于重要性划分,建立了一个鲁棒中继功率优化模型。在该模型中,采用最坏情况法对信道增益的不确定性进行建模,同时采用了一种节省资源的功率分配模型。最后,通过引入自适应收缩 - 扩张系数和修正系数,开发了一种改进的 QPSO 算法,以解决所提出的具有非凸和非线性特征的优化问题。仿真结果表明,所提出的策略能够有效实现关键业务指令的优先可靠传输。特别是在通信资源不足的情况下,该策略可使功率损耗成本降低 7.53%。此外,在不同场景下,电网成本分别降低了 24.05%、34.66% 和 55.79%。
English Abstract
Wireless communication has been widely applied in cyber-physical power systems due to its flexible deployment and cost-effectiveness. To address the problem that the critical business instructions cannot be transmitted reliably with priority under the conditions of limited communication resources and uncertain channel gains, a quantum particle swarm optimization (QPSO)-based robust relay power optimization allocation strategy is proposed. Specifically, a comprehensive importance evaluation method is first designed, which takes the expected transmission rates of business instructions as the QoS requirements and the corresponding power regulation amounts as the impacts of business instructions on the physical grid, to achieve fine-grained prioritization of instructions. Subsequently, based on the importance division, a robust relay power optimization model is established. In this model, the worst-case method is utilized to model the uncertainty of channel gain, and a resource-saving power allocation model is also adopted. Finally, an improved QPSO algorithm is developed, by introducing an adaptive contraction-expansion coefficient and a correction coefficient, to solve the proposed optimization problem with non-convex and nonlinear characteristics. Simulation results demonstrate that the proposed strategy can effectively enable the prioritized and reliable transmission of critical business instructions, especially, when the communication resources are insufficient, the proposed strategy can reduce the power loss cost by 7.53 % . In addition, the grid cost is reduced by 24.05 % , 34.66 % , and 55.79 % , respectively, in different scenarios.
S
SunView 深度解读
从阳光电源的业务视角来看,这项基于量子粒子群优化的信息物理电力系统通信资源分配技术具有重要的战略应用价值。随着我司光储充一体化解决方案和分布式能源系统的大规模部署,数以万计的逆变器、储能变流器、能量管理系统需要通过无线通信网络实现实时监控和协调控制,这对通信可靠性和指令优先级管理提出了严峻挑战。
该技术的核心价值在于解决了通信资源受限场景下的关键业务指令可靠传输问题。在我司的虚拟电厂和微电网项目中,AGC调频指令、功率削减指令、故障隔离指令等具有不同的时效性和重要性要求。论文提出的细粒度优先级划分方法和鲁棒中继功率优化模型,能够在信道增益不确定的实际环境中,确保高优先级指令的可靠传输,这对提升储能系统参与电网调频的响应速度和光伏电站的功率调控精度具有直接意义。
从技术成熟度看,该方法基于成熟的粒子群优化算法改进,具备较好的工程化基础。仿真结果显示的7.53%功率损耗成本降低和最高55.79%的电网成本节约,对我司降低系统运维成本、提升产品竞争力有明显帮助。特别是在海外大型地面电站和工商业储能项目中,通信基础设施往往受限,该技术可显著提升系统可靠性。
技术挑战主要在于算法的实时性能否满足毫秒级控制需求,以及如何与我司现有的iSolarCloud云平台和EMS系统深度集成。建议成立联合研究项目,重点验证该技术在5G专网和卫星通信等多种通信场景下的适配性,为下一代智能能源管理系统奠定技术基础。