← 返回
光伏发电技术 故障诊断 ★ 5.0

基于时频马尔可夫排列转移场的含电力电子设备光伏系统串联电弧故障检测方法

A Series Arc Fault Detection Method Based on Time-Frequency Markov Permutation Transition Field for Photovoltaic Systems With Power Electronic Devices

作者 Zhendong Yin · Shuang Peng · Chunyu Xiao · Li Wang · Shanshui Yang
期刊 IEEE Transactions on Power Electronics
出版日期 2025年3月
技术分类 光伏发电技术
技术标签 故障诊断
相关度评分 ★★★★★ 5.0 / 5.0
关键词 串联电弧故障 检测方法 时频马尔可夫排列转移域 故障特征 检测精度
语言:

中文摘要

串联电弧故障(SAFs)是光伏系统火灾事故的主要原因。在电力电子设备干扰下准确、快速地检测串联电弧故障仍是一项重大挑战。本文提出了一种基于时频马尔可夫排列转移场(TFMPTF)的串联电弧故障检测方法。首先,利用变分模态分解将电流信号分解为包含不同频率成分的模态,以防止不同频带信息之间的干扰。然后,使用时频马尔可夫排列转移场将这些模态转换为二维矩阵。创新性地提出了时频马尔可夫排列转移场中的时频排列模式状态转移分析概念,通过该概念可以有效描绘电流信号的独特结构信息。随后,采用奇异值分解从矩阵中提取故障特征。最后,使用核极限学习机对故障特征进行处理以获得检测结果。离线实验结果表明,所提方法的平均检测准确率为98.97%,通过与不同方法进行比较,验证了该方法的先进性和适应性。将所提方法和对比方法在微程序控制单元(MCU)中进行在线实验,进一步证实了所提方法的检测速度和检测准确率是可靠的。

English Abstract

Series arc faults (SAFs) are a primary cause of fire incidents in photovoltaic systems. Accurately and rapidly detecting SAF under the interference of power electronic devices remains a significant challenge. This article proposes an SAF detection method based on the time-frequency Markov permutation transition field (TFMPTF). First, variational mode decomposition is used to decompose the current signal into modes containing different frequency components to prevent interference between the information of different frequency bands. Then, the modes are transformed into two-dimensional matrices using TFMPTF. Innovatively, the concept of time-frequency permutation patterns state transition analysis in TFMPTF is proposed, from which the distinct structural information of the current signal can be effectively depicted. Afterward, singular value decomposition is employed to extract fault features from matrices. Finally, fault features are processed using a kernel extreme learning machine to obtain detection results. Offline experimental results show that the average detection accuracy of the proposed method is 98.97%, and the advancedness and adaptability of the proposed method are verified by comparing it with different methods. The proposed method and comparison methods are implemented in a microprogrammed control unit (MCU) for online experiments, further confirming that the detection speed and detection accuracy of the proposed method are reliable.
S

SunView 深度解读

从阳光电源的业务视角来看,这项基于时频马尔科夫排列转移场(TFMPTF)的串联电弧故障检测技术具有重要的战略价值。光伏系统的串联电弧故障是导致火灾事故的主要原因,而该技术在电力电子设备干扰环境下实现了98.97%的检测准确率,这对提升我司光伏逆变器和储能系统的安全性能具有直接意义。

该方法的核心优势在于通过变分模态分解有效隔离不同频段信息,避免了逆变器、DC/DC变换器等电力电子设备产生的高频开关噪声对故障检测的干扰。这一点对阳光电源的产品线尤为关键,因为我司的组串式逆变器、集中式逆变器以及储能变流器均涉及复杂的电力电子拓扑,传统检测方法往往难以在这种强干扰环境下保持高准确率。

从应用成熟度评估,该技术已完成MCU平台的在线实验验证,表明其具备工程化落地的可行性。这为我司在逆变器内部集成高精度电弧故障检测功能提供了技术路径,可显著增强产品的安全防护等级,满足UL 1699B等国际安全标准的严格要求。

技术挑战方面需关注:一是算法在MCU上的实时性能优化,需平衡检测精度与计算资源消耗;二是不同光伏场景(如组件老化、阴影遮挡)下的泛化能力验证;三是与现有AFCI功能的集成方案设计。

从战略机遇看,该技术可强化阳光电源在高安全等级市场的竞争力,特别是户用储能和工商业储能领域,为我司打造差异化的安全解决方案提供了技术支撑,同时也为智能运维平台增加了重要的预测性维护维度。