← 返回
基于多保真度代理模型的抗辐射SiC MOSFET功率器件设计
Design of radiation tolerant SiC MOSFET power devices with multi-fidelity surrogate model
| 作者 | Weijie Wu · Zengquan Yao · Shan Xie · Hanyan Huang |
| 期刊 | Journal of Materials Science: Materials in Electronics |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 36.0 卷 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 SiC器件 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 抗辐射性能 多缓冲层结构 电场分布 辐射诱导 击穿性能 |
语言:
中文摘要
具有抗辐射性能的半导体器件对于航空航天应用至关重要,而多缓冲层结构(由三个N型掺杂层组成,掺杂浓度范围为5 × 10^16至1 × 10^19 cm^−3,厚度为0–2 μm)通过调制电场分布来增强器件的抗辐射能力。该结构优化了垂直方向的电场分布,降低了N型漂移区与N+衬底结处的峰值电场,从而有效抑制了辐射诱导的电流倍增效应。然而,器件结构的优化过程耗时较长。在本研究中,我们提出了一种基于非平稳分层Kriging模型的抗辐射SiC UMOSFET结构设计方法。该模型采用“数据-物理”协同驱动的方法预测器件性能,并利用敏感性分析确定输入参数对瞬态峰值电流的相对重要性。该模型能够在显著降低TCAD仿真计算成本的前提下,准确预测器件性能,有助于减少仿真次数,加速复杂器件结构的设计进程。
English Abstract
Semiconductor devices with radiation-hardened performance are essential for aerospace applications, while multi-buffer layer structures (composed of three N-type doped layers with doping concentrations of 5 × 10 16 to 1 × 10 19 cm −3 and thicknesses of 0–2 μm) enhance radiation tolerance through electric field modulation. This structure optimizes the vertical electric field distribution, reducing the peak electric field in the N-drift/N + substrate junction, thereby effectively suppressing radiation-induced current multiplication effects. However, optimizing device structures is a time-consuming process. In this work, we propose a design method for radiation-hardened SiC UMOSFET structures based on the non-stationary layered Kriging model. The model employs a "data-physics" co-driven approach to predict device performance and utilizes sensitivity analysis to determine the relative importance of input parameters on transient peak current. This model could predict the device performance accurately with reduced computing cost of TCAD simulations, which could be used to help reducing the number of simulations and accelerate the structural design process of complexed device.
S
SunView 深度解读
该抗辐射SiC MOSFET设计技术对阳光电源储能系统和光伏逆变器产品具有重要价值。多缓冲层结构通过电场调控提升器件可靠性的思路,可借鉴应用于ST系列PCS和SG系列逆变器的SiC功率模块优化设计中。基于Kriging代理模型的快速仿真方法能显著缩短器件结构开发周期,降低TCAD仿真成本,加速三电平拓扑等复杂功率电路中SiC器件的定制化开发。该方法对提升PowerTitan等储能系统在极端工况下的器件耐久性和系统可靠性具有实际指导意义,可纳入公司功率半导体技术路线图研究。