← 返回
储能系统技术 储能系统 宽禁带半导体 ★ 4.0

溶液法制备的ZnO/Al2O3垂直异质结构IGFET:用于柔性电子器件的高迁移率和光电功能

Solution-processed ZnO/Al2O3 vertical heterostructure IGFETs: high mobility and optoelectronic functionality for flexible electronics

作者 Lephe S contributed to conceptualization
期刊 Journal of Materials Science: Materials in Electronics
出版日期 2025年1月
卷/期 第 36.0 卷
技术分类 储能系统技术
技术标签 储能系统 宽禁带半导体
相关度评分 ★★★★ 4.0 / 5.0
关键词 氧化锌 绝缘栅场效应晶体管 柔性电子 透明电子 异质结构
语言:

中文摘要

在柔性与透明电子领域,氧化锌绝缘栅场效应晶体管(ZnO IGFET)因其优异的材料特性而成为关键组件,其中包括3.37 eV的宽禁带,这有助于实现高电子迁移率、光学透明性以及与多种基底的良好兼容性。基于ZnO的IGFET在透明电子、柔性及可穿戴设备、平板显示器和高频应用等领域具有显著优势。此外,ZnO在热稳定性和化学稳定性方面表现优越,使其非常适合用于电力电子系统。本文采用并研究了一种成本效益高的器件制备技术——溶液法浸涂技术,该方法通过调节提拉速度、溶液浓度和粘度等关键参数,能够精确控制薄膜厚度和表面形貌,并实现大面积活性区域的制备。由于其良好的可扩展性和操作简便性,该技术已成为科研和工业涂层中大面积均匀成膜的优选方案。在IGFET器件构建中,采用了顶接触底栅结构:以氧化锌(ZnO)作为氧化物半导体材料,氧化铝(Al2O3)作为介电层材料,纯银(Ag)作为源极和漏极材料;N型磷掺杂硅衬底被用作栅极电极,用于有源驱动ZnO IGFET的制备。通过沉积Al2O3层以实现栅极电极与半导体沟道之间的隔离。所制备的ZnO IGFET的电学性能通过I–V特性进行测定,场效应迁移率根据沟道长度和宽度计算得出,退火前为7.35 cm² V⁻¹ s⁻¹,退火后提升至9.25 cm² V⁻¹ s⁻¹;亚阈值摆幅在退火前为0.286 V/decade,退火后为0.298 V/decade;阈值电压在退火前为0.148 V,退火后升至约0.175 V。为了评估所制造器件的可靠性,对器件在两种不同光照条件下的电学特性进行了分析,结果显示其具备光响应特性,表明该器件可用于光电电子器件。为研究其光学性质,开展了紫外-可见光吸收谱(UV–visible)和光致发光(photoluminescence)测试,结果表明由于ZnO具有较宽的带隙,所制备器件适用于光电应用。霍尔测量用于确定霍尔载流子迁移率和霍尔载流子浓度,分别为6.02 cm² eV⁻¹ s⁻¹和3.15 × 10²³ cm⁻³。为分析材料的结构、成分和表面形貌特性,进行了X射线衍射(XRD)和X射线光电子能谱(XPS)分析,结果确认了所沉积材料的成功形成。同时采用原子力显微镜(AFM)和场发射扫描电子显微镜(FE-SEM)对所制备器件的表面形貌进行了表征。

English Abstract

In the realm of flexible and transparent electronics, ZnO Insulated Gate Field-Effect Transistor (IGFET) is a crucial component for its exceptional material properties including a wide bandgap of 3.37 eV, which also aids in achieving high electron mobility, optical transparency, and compatibility with diverse substrates. ZnO-based IGFET offers significant advantages in domains such as transparent electronics, flexible and wearable devices, flat-panel displays, and high-frequency applications. Also, ZnO is superior in thermal and chemical stability which makes it ideal for power electronic systems. A cost-efficient technique has been adopted and investigated for the fabrication of the device, as the solution-processed dip coating technique delivers a large active area with precise control over the film thickness and surface morphology by altering the key parameters, such as withdrawal speed, solution concentration, and viscosity of the solution. This technique’s scalability and simplicity have made it an attractive choice for fabricating high-quality thin film in research and industrial coatings that require uniform coating over large areas. For the construction of IGFET, the top-contact bottom-gate approach has been preferred with zinc oxide (ZnO) as oxide semiconducting material, while aluminum oxide (Al 2 O 3 ) as dielectric material and pure silver (Ag) as the source and drain materials. The N-type phosphorus-doped silicon substrate has been utilized as the gate electrode for the active fabrication of ZnO IGFET. Al 2 O 3 has been coated in order to isolate the gate electrode from the semiconductor channel. The electrical property of the fabricated ZnO IGFET has been determined by I–V characteristics and the field-effect mobility is calculated by implementing channel length and width as 7.35 cm 2 V −1 s −1 such that the post-annealed fabricated IGFET shows a field-effect mobility of 9.25 cm 2 V −1 s −1 , while the subthreshold slope is calculated as 0.286 V/decade before annealing. The post-annealed IGFET shows a subthreshold slope of 0.298 V/decade and the threshold voltage is obtained to be 0.148 V before annealing while the post-annealing results in the threshold voltage is about 0.175 V. The fabricated device has been analyzed in two different light conditions for electrical characterization to evaluate the dependability of the manufactured device, which shows photoresponsivity that can be opted for optoelectronic devices. In order to study the optical properties, UV–visible and photoluminescence studies have been carried out, and the fabricated device is identified to be suitable for optoelectronic devices because of the obtained wider band gap of ZnO. Hall measurements have been demonstrated to calculate the Hall carrier mobility and Hall carrier density and it is given as 6.02 cm 2 eV −1 s −1 and 3.15 × 10 23 cm −3 , respectively. In order to analyze the material’s structural, compositional, and topographical properties, X-ray diffraction and X-ray photoelectron spectroscopic studies have been performed, confirming that the deposited materials could also be identified. Atomic force microscopy and field emission scanning electron microscopy have been employed to evaluate the surface morphology of the fabricated device.
S

SunView 深度解读

该溶液法ZnO/Al2O3异质结晶体管技术对阳光电源储能系统和光伏逆变器具有重要参考价值。其宽禁带(3.37eV)特性与公司SiC/GaN功率器件战略契合,9.25 cm²V⁻¹s⁻¹的高迁移率可提升ST系列PCS开关性能。溶液法低成本工艺为大面积柔性传感器集成提供思路,可应用于PowerTitan储能系统的电池管理和iSolarCloud平台的智能监测模块,其光电响应特性亦可优化光伏MPPT算法的光照检测精度。