← 返回

超宽禁带半导体器件的新兴热学计量技术

Emerging thermal metrology for ultra-wide bandgap semiconductor devices

作者 Van De Walle · El Sachat · Sotomayor Torres · De La Cruz · Nano Today · Jiryaei Sharahi
期刊 Applied Physics Letters
出版日期 2025年1月
卷/期 第 126 卷 第 20 期
技术分类 储能系统技术
技术标签 储能系统 宽禁带半导体 GaN器件 可靠性分析
相关度评分 ★★★★★ 5.0 / 5.0
关键词 超宽带隙半导体材料 热管理 器件架构 热表征 器件性能
语言:

中文摘要

β-Ga2O₃、AlN、AlGaN和金刚石等超宽禁带(UWBG)半导体材料因其优异的电子特性,成为高功率、高频器件的关键候选材料。然而,除金刚石和AlN外,这些材料普遍具有较低的热导率,难以满足高功率密度下的散热需求,带来严峻的热管理挑战。因此,亟需结合新型器件结构的先进热管理方案以抑制器件峰值温度过度升高。同时,具备高空间和时间分辨率的精确器件级热表征技术对于验证和优化热设计、提升器件性能与可靠性至关重要。本文综述了当前应用于UWBG半导体器件的主要热学计量方法。

English Abstract

Ultrawide bandgap (UWBG) semiconductor materials, such as β−Ga2O3 (gallium oxide), AlN (aluminum nitride), AlxGa1−xN (AlGaN), and diamond, have emerged as essential candidates for components in high-power, high-frequency applications due to their superior electronic properties. However, with the exception of diamond and AlN, these materials present unique thermal management challenges, primarily because of their low thermal conductivities that are incapable of managing the demand for high power densities. Therefore, novel thermal management approaches that feature new device architectures are needed to prevent excessively high peak temperatures in UWBG devices. In parallel, accurate device-level thermal characterization (with high spatial/temporal resolution) is crucial to verify and optimize these designs with an overall goal to improve device performance and reliability. This paper discusses current thermal metrology techniques used for UWBG semiconductor devices covering: optical me
S

SunView 深度解读

该超宽禁带半导体热学计量技术对阳光电源功率器件应用具有重要价值。在ST系列储能变流器和SG光伏逆变器中,SiC/GaN等宽禁带器件的热管理直接影响系统功率密度和可靠性。文中提出的高时空分辨率热表征方法可用于优化PowerTitan储能系统的三电平拓扑功率模块设计,精确定位热点并验证散热方案。对于1500V高压系统,该技术能指导器件结构优化,抑制峰值温度,提升器件寿命。结合iSolarCloud智能运维平台,热学数据可实现预测性维护。此外,该技术对车载OBC和充电桩的高功率密度设计同样具有指导意义,助力阳光电源提升产品竞争力。