← 返回
原位生长SiNx在AlN/GaN高电子迁移率晶体管欧姆接触形成中的作用
Role of in-situ SiNx in ohmic contact realization in AlN/GaN HEMTs
| 作者 | Manoj Saxena |
| 期刊 | Journal of Materials Science: Materials in Electronics |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 36.0 卷 |
| 技术分类 | 电动汽车驱动 |
| 技术标签 | GaN器件 |
| 相关度评分 | ★★★★ 4.0 / 5.0 |
| 关键词 | 欧姆接触 氮化硅 高电子迁移率晶体管 接触电阻 界面反应 |
语言:
中文摘要
本研究探讨了在用于高频应用的AlN/GaN高电子迁移率晶体管(HEMTs)上原位生长的氮化硅(SiNx)层中欧姆接触的形成与优化。采用标准的Ti/Al/Ni/Au金属体系,获得的接触电阻(RC)为0.14 Ω·mm,方块电阻(RSH)为629 Ω/□,比接触电阻为1.2 × 10−6 Ω·cm2。高温退火过程中,Ti金属与下方的SiNx层发生界面反应,生成钛硅化物(TixSiy)复合物和氮化钛(TiN)。接触退火在氮气氛围中通过快速热退火(RTP)工艺完成,实验发现800 °C下退火60秒可获得最优的接触电阻性能。采用相同的欧姆接触工艺制备了栅长(Lg)为200 nm、源漏间距(Lsd)为4 µm的HEMT器件,在Vds = 1 V时实现了最大漏极电流(ID)达1.02 A/mm,导通电阻(RON)为4.2 Ω·mm,峰值跨导(gmax)为340 mS/mm。
English Abstract
This study investigates the formation and optimization of ohmic contacts on in-situ grown Silicon Nitride (SiN x ) on AlN/GaN high electron mobility transistors (HEMTs) for high-frequency applications. Using the standard Ti/Al/Ni/Au metal scheme, the achieved contact resistance (R C ) is 0.14 Ω·mm, with a sheet resistance (R SH ) of 629 Ω/□ and specific contact resistance of 1.2 × 10 −6 Ω·cm 2 . The high-temperature annealing of the contact induces the interfacial reaction between the Ti and underlying SiN x layer, leading to titanium silicide (Ti x Si y ) complexes and titanium nitride (TiN). The annealing of the contact was done using rapid thermal process (RTP) in N 2 ambient, and 800 °C for 60 s was found to give the best contact resistance. The same ohmic contact is used to realize the HEMT device with a gate length (L g ) of 200 nm and a source-drain spacing (L sd ) of 4 µm, achieving a maximum drain current (I D ) of 1.02A/mm at V ds = 1 V with on-resistance (R ON ) 4.2 Ω·mm and a peak transconductance (g max ) of 340 mS/mm.
S
SunView 深度解读
该AlN/GaN HEMT欧姆接触优化技术对阳光电源功率器件应用具有重要价值。研究实现的0.14Ω·mm接触电阻和340mS/mm峰值跨导,可显著降低SG系列光伏逆变器和ST储能变流器中GaN功率开关的导通损耗。原位SiNx层与Ti/Al金属化方案形成的低阻接触,适用于三电平拓扑和高频开关场景。800°C快速热退火工艺形成的TiN/TixSiy界面结构,可提升电动汽车OBC充电机和电机驱动器中GaN器件的热稳定性和可靠性,支持更高功率密度设计,契合1500V系统和充电桩大功率应用需求。