← 返回
电动汽车驱动 GaN器件 多物理场耦合 ★ 5.0

多孔氮化镓制备技术的研究进展:方法与应用综述

Advances in fabrication techniques for porous GaN: a review of methods and applications

作者 Porous GaN
期刊 Journal of Materials Science: Materials in Electronics
出版日期 2025年1月
卷/期 第 36.0 卷
技术分类 电动汽车驱动
技术标签 GaN器件 多物理场耦合
相关度评分 ★★★★★ 5.0 / 5.0
关键词 多孔GaN 光提取效率 应变积累 缺陷 制备技术
语言:

中文摘要

氮化镓(GaN)因其优异的材料特性,被广泛应用于高效光电子器件和高性能电力电子器件的设计中。然而,其广泛应用仍面临若干瓶颈,包括由于全内反射导致的光提取效率低下、晶格失配和热失配引起的应变累积,以及缺陷导致的性能退化等问题。在GaN中引入多孔结构可有效应对这些挑战,通过增强光耦合输出、在外延生长过程中缓解应变、实现量子限域效应并改善热管理性能。本文综述了湿法刻蚀技术的最新进展,特别是电化学刻蚀(EC)、金属辅助化学刻蚀(MacEtch)和光电化学刻蚀(PEC)在调控多孔GaN形貌方面的应用。文章系统分析了掺杂浓度、施加偏压、电解液浓度及光照条件之间的复杂相互作用,阐明了这些参数对孔径分布、均匀性以及相应光学行为的影响。本工作的关键贡献在于提出了一种系统化、针对特定形貌的框架,用于优化PEC刻蚀参数以实现目标多孔结构,从而解决当前研究中缺乏标准化实验协议的问题。此外,本文还指出了目前尚未解决的挑战,如非预期的多孔化、表面氧化以及刻蚀后污染等问题,并总结了迄今报道的各类缓解策略。通过将这些研究成果置于新兴应用的宏观背景下——包括先进发光器件、传感器、能源器件以及生物界面,本综述强调了在可控且高度优化条件下制备多孔GaN所具备的广泛潜力。最终,本工作旨在指导未来的研究方向,推动发展更可靠、可扩展且面向具体应用的多孔GaN技术,从而更充分地发挥该材料平台在下一代光子学与纳米电子系统中的独特优势。

English Abstract

Gallium nitride (GaN) is recognized for its exceptional material properties that support the design of both high-efficiency optoelectronic and high-performance power devices. Yet, its widespread application still faces bottlenecks, including poor light extraction due to total internal reflection, strain accumulation from lattice and thermal mismatches, and defect-induced performance degradation. The porosity structures within GaN can tackle these challenges by enhancing light out-coupling, accommodating strain relaxation during epitaxial growth, and providing quantum confinement and improved thermal management. This review discusses the advances in wet etching methods, particularly electrochemical (EC), metal-assisted chemical etching (MacEtch), and photoelectrochemical (PEC) etching for tailoring porous GaN morphologies. The intricate interplay between doping levels, applied bias, electrolyte concentration, and illumination conditions is analyzed to clarify their effects on pore size distribution, uniformity, and resultant optical behavior. A significant contribution of this work is the proposal of a systematic, morphology-specific framework that optimizes PEC etching parameters for achieving targeted porous structures, addressing the lack of standardized protocols across studies. In addition, this paper highlights unresolved challenges such as unintended porosity, surface oxidation, and post-etch contamination, and summarizes mitigation strategies reported to date. By positioning these insights within the broader context of emerging applications, including advanced light emitters, sensors, energy devices, and biointerfaces, this review underscores the versatile potential of porous GaN when fabricated under controlled, well-optimized conditions. Ultimately, this work intends to guide future efforts toward more reliable, scalable, and application-specific porous GaN technologies that can better leverage the unique advantages of this material platform for next-generation photonic and nanoelectronics systems.
S

SunView 深度解读

该多孔GaN制备技术对阳光电源功率器件研发具有重要价值。文中电化学蚀刻方法可优化GaN器件的应变管理和热管理性能,直接提升SG系列逆变器和ST储能变流器中GaN功率模块的可靠性。多孔结构实现的应变释放机制可降低器件缺陷密度,提高开关频率和效率;改善的散热特性可增强三电平拓扑和1500V系统的功率密度。该技术框架为阳光电源下一代高频GaN驱动器、车载充电机OBC模块提供工艺优化方向,助力实现更高功率密度和系统集成度。