← 返回
氮掺杂双碳包覆Na4VMn1-xCrx(PO4)3/NC@CNTs的合成及其电化学性能研究
Study on the synthesis and electrochemical performance of nitrogen-doped double carbon-coated Na4VMn1- _x_Cr_x_(PO4)3/NC@CNTs
| 作者 | Cheng Xu · Ke Liu · Yong Lu |
| 期刊 | Journal of Materials Science: Materials in Electronics |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 36.0 卷 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 SiC器件 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 钠离子电池 NASICON型材料 正极材料 电化学性能 掺杂策略 |
语言:
中文摘要
钠离子电池(SIBs)作为一种新兴的储能技术,已被公认为锂离子电池(LIBs)最有前景的替代方案之一。在各类正极材料中,NASICON型Na4VMn(PO4)3(NVMP)复合材料因其独特的三维骨架结构、高氧化还原电位、稳定的晶体结构以及快速的Na+扩散速率而受到广泛关注。然而,NVMP正极材料的实际应用受限于若干固有缺陷,包括本征电子导电性低、Mn3+引起的姜-泰勒(Jahn-Teller)畸变以及结构退化机制,这些因素共同导致其倍率性能不佳和循环耐久性有限。为应对这一挑战,本文在NVMP材料上引入了氮掺杂双纳米碳包覆层以提升复合材料的导电性。在此基础上,采用溶胶-凝胶法制备了一系列Na4VMn1-xCrx(PO4)3/NC@CNTs正极材料(其中x = 0, 0.25, 0.5, 0.75 和 1),实现了对Mn/Cr比例的定向调控,从而优化其电化学性能。氮掺杂双纳米碳包覆层能够形成碳层缺陷和活性位点,并构建三维导电网络结构,有助于提高Na+离子的扩散速率并缩短其传输路径。结果表明,当x = 0.5时,Na4VMn0.5Cr0.5(PO4)3/NC@CNTs正极材料表现出最高的放电比容量,达到132.1 mAh·g−1。值得注意的是,在高倍率下其容量迅速下降,可能归因于晶体结构的坍塌和过度极化,从而导致材料电化学性能恶化。经过优化的Na4VCr(PO4)3/NC@CNTs材料(当x = 1时)展现出优异的倍率性能,在1C倍率下容量保持率达91.2%,同时电荷转移电阻显著降低(Rct = 331.9 Ω)。本研究通过双过渡金属协同掺杂策略,为NASICON型正极材料的设计提供了新范式,并证实了Cr/Mn共取代在平衡离子/电子导电性方面对于下一代高功率钠离子电池的有效性。
English Abstract
Sodium-ion batteries (SIBs), as an emerging energy storage technology, have been recognized as one of the most promising alternatives to lithium-ion batteries (LIBs). Among various cathode materials, the NASICON-type Na 4 VMn(PO 4 ) 3 (NVMP) composite material has garnered considerable attention owing to its distinctive 3D framework structure, high redox potential, stable crystal structure, and rapid Na + diffusion rate. Nevertheless, the practical application of NVMP cathodes is constrained by several inherent limitations, including inherently low electronic conductivity, Mn 3+ Jahn–Teller distortion, and structural degradation mechanisms, which collectively contribute to compromised rate capability and limited cycling durability. To tackle this challenge, an N-doped dual nano-carbon coating was applied to the NVMP material to enhance the conductivity of the composite. Building upon this foundation, a series of Na 4 VMn 1- x Cr x (PO 4 ) 3 /NC@CNTs cathode materials (where x = 0, 0.25, 0.5, 0.75, and 1) were successfully prepared using the sol–gel method, enabling targeted regulation of Mn/Cr ratios for enhanced electrochemical performance. The N-doped dual nano-carbon coating is capable of forming carbon layer defects and active sites, as well as constructing a 3D conductive network structure, which can enhance the diffusion rate of Na + ions and shorten their transport path. The results indicate that the Na 4 VMn 0.5 Cr 0.5 (PO 4 ) 3 /NC@CNTs cathode material demonstrates the highest discharge capacity, achieving 132.1 mAh·g −1 when x = 0.5. Notably, the capacity decreases rapidly at high rates, potentially attributed to the collapse of the crystal structure and excessive polarization, resulting in a deterioration of the material’s electrochemical performance. The optimized Na 4 VCr(PO 4 ) 3 /NC@CNTs (when x = 1) demonstrates exceptional rate performance with 91.2% capacity retention at 1C, accompanied by significantly reduced charge transfer resistance (Rct = 331.9 Ω). This study establishes a design paradigm for NASICON-type cathode materials through dual-transition metal synergistic doping and demonstrates the efficacy of Cr/Mn co-substitution in balancing ionic/electronic conductivity for next-generation high-power sodium-ion batteries.
S
SunView 深度解读
该钠离子电池正极材料研究对阳光电源储能系统具有重要战略价值。NASICON型材料的高倍率性能(1C容量保持率91.2%)和低电荷转移阻抗(331.9Ω)特性,可为PowerTitan储能系统和ST系列PCS提供成本更优的电池方案。氮掺杂双碳包覆技术构建的三维导电网络,与阳光三电平拓扑和SiC器件的高频开关特性形成协同,可优化储能变流器的充放电控制策略。Cr/Mn协同掺杂平衡离子/电子导电性的设计思路,为大规模储能系统的功率密度提升和循环寿命优化提供材料级解决方案,支撑GFM并网型储能的快速响应需求。