← 返回
氮硫共掺杂石墨烯电极用于集成电化学传感与能量存储
Nitrogen and sulfur Co-doped graphene electrodes for integrated electrochemical sensing and energy storage
| 作者 | Maziyar Sabet |
| 期刊 | Journal of Materials Science: Materials in Electronics |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 36.0 卷 |
| 技术分类 | 储能系统技术 |
| 技术标签 | SiC器件 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 电化学传感 能量存储 氮硫共掺杂 石墨烯 离子传输 |
语言:
中文摘要
开发具有电化学传感与能量存储双重功能的电极材料,对推动可穿戴和便携式电子设备的发展至关重要。本研究采用氮和硫共掺杂策略调控石墨烯的理化性质,以实现其在多功能应用中的性能优化。共掺杂石墨烯具有236 m²/g的比表面积、高缺陷密度以及改善的电导率,有利于离子的有效传输和电荷存储。结构表征证实了两种掺杂元素成功引入碳晶格,并导致晶格内部产生无序结构。电化学测试结果表明该材料兼具传感和电容行为。在传感应用方面,该材料对对苯二酚的检测表现出1–150 µM的线性范围,检测限低至0.28 µM。这些优异性能归因于具有氧化还原活性的硫官能团和导电性氮区域,它们增强了分析物的吸附能力和电子转移速率。在能量存储性能测试中,该共掺杂石墨烯电极在1 A/g电流密度下展现出280 F/g的比电容,能量密度达42 Wh/kg,并在10,000次循环后仍保持95%的电容 retention 率。上述结果表明,氮和硫共掺杂的协同效应能够调节石墨烯的电子结构和界面化学特性,从而同时有益于传感与储能两类应用。所采用的合成方法——基于水热掺杂与高温退火——具有可扩展性和环境友好性。本研究强调了将共掺杂石墨烯作为无金属平台应用于需集成传感与储能功能的紧凑型电子系统的可行性。
English Abstract
Developing electrode materials with integrated functionality for electrochemical sensing and energy storage is critical to advancing wearable and portable electronics. In this study, a nitrogen and sulfur co-doping approach was employed to tailor the physicochemical properties of graphene for multifunctional applications. The co-doped graphene exhibited a surface area of 236 m2/g, high defect density, and improved electrical conductivity, enabling effective ion transport and charge storage. Structural characterization confirmed successful incorporation of both dopants and induced disorder within the carbon lattice. Electrochemical measurements demonstrated combined sensing and capacitive behavior. For sensing applications, the material showed a linear detection range of 1–150 µM for hydroquinone with a detection limit of 0.28 µM. These characteristics were attributed to the redox-active sulfur functionalities and conductive nitrogen domains that enhanced analyte adsorption and electron transfer. In energy storage tests, the co-doped graphene electrode exhibited a specific capacitance of 280 F/g at 1 A/g, with an energy density of 42 Wh/kg and 95% capacitance retention after 10,000 cycles. These results suggest that the synergistic effects of nitrogen and sulfur co-doping modify graphene’s electronic structure and interfacial chemistry in a manner beneficial to both applications. The adopted synthesis method—based on hydrothermal doping and thermal annealing—is scalable and environmentally benign. This study underscores the feasibility of employing co-doped graphene as a metal-free platform for integration into compact electronic systems requiring combined sensing and energy storage functionalities.
S
SunView 深度解读
该氮硫共掺杂石墨烯技术对阳光电源储能系统具有重要参考价值。其280 F/g比电容、42 Wh/kg能量密度及95%循环稳定性,可启发ST系列PCS的辅助储能单元优化。集成传感功能可应用于PowerTitan电池管理系统,实现电解液状态实时监测。水热合成工艺的可规模化特性契合储能产品制造需求。该材料的金属无关特性可降低BMS传感器成本,同时其快速电子转移能力可优化iSolarCloud平台的预测性维护算法,通过电化学信号提前识别电池健康状态,提升ESS系统安全性与经济性。