← 返回
基于深度学习与稀疏风洞数据的长跨柔性光伏结构时空风压场预测
Spatiotemporal wind pressure field prediction for long-span flexible photovoltaic structures using deep learning and sparse wind tunnel data
| 作者 | Hehe Ren · Haoyue Liu · Boyang Wang · Shitang Ke |
| 期刊 | Solar Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 286 卷 |
| 技术分类 | 光伏发电技术 |
| 技术标签 | 储能系统 深度学习 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | The fully convolutional network model (FCN) with multi-scale and skip connections based on a [CNN](https://www.sciencedirect.com/topics/chemical-engineering/neural-network "Learn more about CNN from ScienceDirect's AI-generated Topic Pages") framework is proposed in the study. |
语言:
中文摘要
摘要 长跨柔性光伏(PV)结构是应对“光伏+”发展挑战的关键解决方案之一。然而,由于其跨度大、自重轻、刚度柔、离地高度高等特点,易产生显著的风致振动响应,属于典型的风敏感结构,因此风荷载成为其结构设计中的控制性荷载。目前,针对柔性光伏结构的风荷载尚无明确的设计标准,相关研究主要依赖风洞试验获取风荷载数据。但由于试验尺度限制,风压测点只能在结构表面稀疏布置。为此,本文将风洞试验数据与深度学习方法相结合,提出一种仅基于有限数量监测点即可预测柔性光伏结构表面风压时空场的方法。考虑到风压具有显著的时空波动特性,本文基于卷积神经网络(CNN)框架,提出一种具有多尺度特征提取路径和跳跃连接结构的全卷积网络模型(FCN)。该模型包含多个并行路径,能够捕捉时空风压场中不同尺度涡旋结构的风压信息,从而实现基于少量实测点数据对完整时空风压场的高精度预测。结果表明,在空间维度上,预测结果与真实值之间的相对误差和总体误差均控制在10%以内;在时间维度上,预测所得的时间历程曲线与真实值高度吻合,波动响应的匹配率超过90%。这说明所提出的FCN模型能够有效学习长跨柔性光伏结构表面风压的时空分布特征。因此,本文提出的长跨柔性光伏结构风压时空场预测方法,在优化风压传感器空间布设方案以及风压时程预测方面具有重要潜力,兼具显著的科学意义与工程应用价值。
English Abstract
Abstract Long-span flexible photovoltaic (PV) structures are one of the key solutions to the challenges of the “PV+” development. However, their long span, light weight, flexible stiffness, and high clearance result in pronounced wind-induced vibration responses, categorizing them as wind-sensitive structures. Consequently, wind load becomes the controlling load in their structural design. Currently, there is no established standard for determining wind loads on flexible photovoltaic structures, and research in this area primarily relies on wind tunnel testing. However, due to limitations in scale, wind pressure measurement points can only be sparsely distributed on the structure’s surface. This study integrates wind tunnel test data with deep learning methods to predict wind pressure spatiotemporal fields on flexible photovoltaic structures based on a limited number of monitoring points. Specifically, considering the spatiotemporal fluctuation characteristics of wind pressure, a fully convolutional network model (FCN) with multi-scale and skip connections based on a CNN framework is proposed. This model includes multiple pathways, enabling it to capture wind pressure information across various vortex structural scales of the spatiotemporal wind pressure field. Consequently, it can predict the complete spatiotemporal wind pressure field using data from a limited number of measurement points. The results show that, in the spatial dimension, the relative error and overall error between the predicted and ground truth are within 10%. In the temporal dimension, the predicted time-history curves closely align with the ground truth, with a match rate of over 90% for fluctuating responses. This indicates that the FCN model can effectively learn the spatiotemporal characteristics of wind pressure on the surface of long-span flexible photovoltaic structures. Therefore, the proposed method for predicting wind pressure spatiotemporal fields on long-span flexible photovoltaic structures offers significant potential for optimizing the spatial arrangement of wind pressure sensors and predicting wind pressure time histories, holding significant scientific and engineering application value.
S
SunView 深度解读
该风压场时空预测技术对阳光电源大型地面光伏电站及柔性支架系统具有重要应用价值。针对SG系列逆变器配套的大跨度柔性光伏支架,该深度学习模型可优化抗风设计,降低结构成本。对于PowerTitan储能系统的户外集装箱布局,可通过风压预测优化散热通道设计,提升系统可靠性。建议将该技术集成至iSolarCloud平台,结合现场风速监测数据,实现光伏阵列风致振动的实时预警与结构健康监测,特别适用于山地、沿海等强风地区的电站智能运维,为柔性支架选型与MPPT控制策略优化提供数据支撑。