← 返回
基于机器学习与元启发式特征选择的钙钛矿材料多性能预测
Multi-Properties prediction of perovskite materials using Machine learning and Meta-Heuristic feature selection
| 作者 | Frendy Jaya Kusum · Eri Widianto · Wahyono · Iman Santoso · Sholihun · Moh.Adhib Ulil Absor · Setyawan Purnomo Sakti · Kuwat Triyan |
| 期刊 | Solar Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 286 卷 |
| 技术分类 | 光伏发电技术 |
| 技术标签 | 储能系统 机器学习 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | Multi-properties ML accelerates discovery of ABX3 and A2BB’X6[perovskites](https://www.sciencedirect.com/topics/physics-and-astronomy/perovskites "Learn more about perovskites from ScienceDirect's AI-generated Topic Pages"). |
语言:
中文摘要
摘要 扩大具有优异光电特性的稳定钙钛矿材料的可获得性,对于突破当前光伏吸收层材料的效率限制至关重要。本文提出了一种多性能机器学习(ML)预测策略,以加速ABX3和A2BB’X6型钙钛矿材料的发现。该方法评估了高性能光伏材料所需的关键性质,包括形成能(ΔEf)、热力学稳定性、带隙(Eg)以及带隙类型。本研究评估了多种特征选择方法,如最小绝对收缩与选择算子(LASSO)、k-最佳特征选择法(k-Best)以及遗传算法(Genetic Algorithm)、粒子群优化(Particle Swarm Optimization)、原子搜索优化(Atom Search Optimization)、电磁场优化(Electromagnetic Field Optimization)和多宇宙优化器(Multi-Verse Optimizer)等元启发式算法(MHA),以提升模型性能。本研究所构建的模型在ΔEf和Eg的预测中,交叉验证与测试集的R²得分持续超过0.80;而在热力学稳定性与带隙类型的分类任务中,模型准确率均高于0.85。尽管仅依赖成分特征,我们的模型在使用相同数据集的情况下,性能仍优于以往研究。元启发式特征选择方法显著提升了机器学习模型在预测ΔEf、Eg以及分类带隙类型方面的表现。值得注意的是,我们的热力学稳定性分类模型仅利用成分特征即可实现高效预测。
English Abstract
Abstract Extending the availability of stable perovskite materials with appealing optoelectronic characteristics is essential to surpassing the current efficiency limitations in photovoltaic absorbers. Herein, we propose a multi-properties machine learning (ML) prediction strategy to accelerate the discovery of ABX 3 and A 2 BB’X 6 perovskites . This approach evaluates key properties essential for high-performance photovoltaic materials, including formation energy ( Δ E f ), thermodynamic stability, band gap ( E g ), and the nature of the band gap. This study evaluated various feature selection methods, such as Least Absolute Shrinkage and Selection Operator, k-Best, and meta -heuristic algorithms (MHA) like Genetic Algorithm, Particle Swarm Optimization, Atom Search Optimization, Electromagnetic Field Optimization, and Multi-Verse Optimizer, to enhance model performance. The models developed in this study achieved cross-validation and testing R 2 scores consistently exceeding 0.80 for Δ E f and E g predictions, while thermodynamic stability and band gap classification models attained accuracies above 0.85. Despite relying solely on compositional features, our models demonstrate improved performance over previous studies using the same dataset. The MHA feature selection method improves the performance of ML models in predicting Δ E f , E g , and classifying the nature of the band gap. Notably, our thermodynamic stability classification model performs effectively using only compositional features.
S
SunView 深度解读
该钙钛矿材料多属性机器学习预测技术对阳光电源光伏逆变器产品线具有重要应用价值。通过元启发式算法优化的ML模型可预测材料带隙、形成能等关键光电特性,准确率超85%,有助于加速高效光伏吸收材料筛选。这与SG系列逆变器的MPPT优化技术形成协同:更优材料特性可提升组件效率,而精准的材料性能预测能指导逆变器参数自适应调整。该方法论可借鉴至iSolarCloud平台的预测性维护算法,通过多目标特征选择提升系统性能预测精度,优化ST储能系统的能量管理策略。