← 返回
光伏发电技术 机器学习 ★ 5.0

提升太阳能电池板性能:一种基于机器学习的灰尘检测与自动化喷水清洁策略

Enhancing solar panel performance: A machine learning approach to dust detection and automated water sprinkle-based cleaning strategy

语言:

中文摘要

摘要 光伏(PV)组件由于灰尘积聚,其效率显著降低。为了以经济有效的方式最小化灰尘对光伏系统的影响,需要确定最优的清洁间隔。为实现该目标,可利用机器学习(ML)模型检测光伏组件上的灰尘水平是否超过预设阈值,从而在无需现场人工干预的情况下判断是否需要清洁面板。基于此目标,本研究分析了灰尘在孟加拉国对光伏系统的不利影响,并提出了一种基于机器学习分类的新型灰尘检测方法,进而开发了一套清洁系统。本文实现了多种机器学习分类器,并对其性能进行了评估,其中表现最优的人工神经网络(ANN)模型达到了98.11%的最高准确率。当机器学习模型检测到灰尘时,用户可通过无线方式启动喷水清洁系统,通过向面板喷射加压水有效清除灰尘。所提出的清洁系统能够将积尘光伏组件的效率恢复至与清洁组件相当的水平(14.87%)。此外,通过将效率下降量化为经济损失,开展了经济性研究以评估该清洁系统的可行性。结果表明,对于装机容量超过2.89 kWp的光伏系统,所提出的清洁系统具有经济可行性。

English Abstract

Abstract The efficiency of photovoltaic (PV) modules significantly reduces due to accumulation of dust. To minimize the dust effect on PV in a cost-effective manner, optimal cleaning interval need to be decided. To accomplish this objective, machine learning(ML) models can be utilized to detect dust level on PV beyond predefined threshold which would then aid in deciding whether or not to clean the panels without on-site human intervention. With this goal, this study analyzes the detrimental impact of dust on PV systems in Bangladesh and proposes a novel ML classification based dust detection method followed by development of a cleaning system. Several ML classifiers have been implemented and their performance are evaluated, with the best performing model Artificial Neural Network (ANN) achieving the highest accuracy of 98.11%. Upon dust detection by the ML model, the water sprinkler cleaning system gets wirelessly activated by the user, which effectively removes dust by spraying pressurized water onto the panel. The proposed cleaning system restores dusty PV module efficiency to match to that of the clean module (14.87%). Moreover, an economic study has been done by quantifying the decrease in efficiency as a financial loss to assess the viability of the cleaning system. The result shows that the proposed cleaning system is economically viable for PV systems having capacities above 2.89 kWp.
S

SunView 深度解读

该机器学习驱动的光伏清洁技术对阳光电源SG系列逆变器和iSolarCloud平台具有重要应用价值。研究证实灰尘导致效率损失可达14.87%,ANN模型98.11%的检测精度可集成至智能运维系统,结合MPPT优化算法实现发电量损失预警。建议将该分类模型嵌入iSolarCloud平台,通过逆变器实时功率数据训练本地化灰尘检测模型,自动触发清洁建议,特别适用于中东、南亚等高尘环境的大型地面电站。经济性分析(2.89kWp以上可行)为运维决策提供量化依据,可与预测性维护功能协同,降低LCOE并提升系统全生命周期收益。