← 返回
光伏发电技术 深度学习 ★ 5.0

农业光伏系统的控制策略:平衡发电量与农作物产量以实现可持续发展

Control strategies for agricultural photovoltaic systems: Balancing electricity generation and agricultural yield for sustainable development

语言:

中文摘要

摘要 不同的控制策略对农业光伏(PV)系统的整体性能具有显著影响。本研究采用人工神经网络(ANN)算法对数值天气预报(NWP)模型的太阳辐照度预测结果进行修正,并提出了以实现最优农作物产量和最优发电量为目标的创新性控制策略。结合法国的一个农业光伏项目,研究了不同控制策略下农业光伏系统的发电量、作物产量以及土地当量比(LER)。结果表明,与传统的太阳跟踪控制策略相比,最优产量控制策略的年发电量减少23%,LER值平均下降10%。而最优发电量控制策略相较于传统太阳跟踪控制策略,最高可实现单日发电增益20.4%,年发电量增加15.6 MWh。尽管最优发电量控制策略会导致农业产量有所下降,但综合考虑电力输出与农业产量的整体效益,该策略仍略优于传统的太阳跟踪控制策略。本研究结果有助于实现土地资源的高效利用,对推动能源与农业的可持续发展具有重要意义。

English Abstract

Abstract Different control strategies have significant influence on the overall performance of agricultural photovoltaic (PV) system. In this study, an artificial neural network (ANN) algorithm was used to modify the solar irradiance prediction of a numerical weather prediction (NWP) model, and proposed the innovative control strategies for optimal yield and optimal electricity generation. Combined with an agricultural PV project in France, the electricity generation, crop yield and land equivalent ratio (LER) of agricultural PV system under different control strategies were investigated. The results show that the annual electricity generation of the optimal yield control strategy decreases by 23%, and the LER value decreases by 10% on average compared to the traditional solar tracking strategy. Compared with the traditional solar tracking control strategy, the optimal electricity generation control strategy can achieve a maximum daily electricity gain of 20.4% and an annual electricity generation increase of 15.6 MWh. Although the optimal electricity generation control strategy will lead to a decrease in agricultural yield, considering the comprehensive electricity and agricultural yield, the optimal electricity generation control strategy is slightly better than the traditional solar tracking strategy. The results of this study are helpful for realizing the efficient use of land resources, which is of great significance for promoting sustainable energy and agricultural development.
S

SunView 深度解读

该农光互补控制策略研究对阳光电源SG系列光伏逆变器及iSolarCloud平台具有重要应用价值。文中基于ANN算法的辐照预测与动态控制策略,可集成至我司MPPT优化算法中,实现发电与农业产出的智能平衡。研究显示优化发电策略可提升15.6%年发电量,验证了智能控制的经济性。建议将该多目标优化思路融入iSolarCloud平台的预测性维护模块,结合气象数据与作物生长模型,为农光互补项目提供差异化控制方案,提升土地综合利用效率,拓展分布式光伏应用场景。